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Abstract

Cohen et al. [2021] identified a distinct two-phase dynamics in the gradient descent
trajectory within the loss landscape. Initially, the leading eigenvalue of the objective
function’s Hessian increases to 2/step size (Progressive Sharpening), followed by
a phase transition characterized by oscillations of the top eigenvalue around this
critical value (Edge of Stability). This project reviews the empirical findings of
Cohen et al. [2021] and provides an expository summary of two theoretical papers.
The first, Damian et al. [2022], shows that the dynamics of gradient descent at
the edge of stability can be captured by a cubic Taylor expansion. This forms a
negative feedback loop, where, upon divergence of the iterates, the third-order term
in the Taylor expansion of the loss function becomes predominant. Characterized
by stages of increasing sharpness followed by self-correction, this cyclical process
effectively serves as a self-correcting mechanism. The second paper, Li et al.
[2022], focuses on the mechanisms of Progressive Sharpening. Analyzing a two-
layer linear model, they argue that sharpness is primarily influenced by the norm of
the weights in the output layer. The increase in sharpness hinges on the consistently
negative inner product between the network’s predictions and the residual, leading
to an increase in the norm and, consequently, in the sharpness.

1 Introduction

Gradient descent and its simple variations provably reduce the objective function at every step,
provided the largest eigenvalue of the Hessian, referred to here as the sharpness, is bounded by
2/η along the optimization trajectory, where η is the learning rate. Conversely, the path taken by
gradient descent is provably diverging if the sharpness exceeds this threshold at any step. Thus,
the stability of gradient descent is determined by whether the optimization path remains within
Sgood := {θ | S(θ) < 2

η}, where S(θ) denotes the sharpness (see Definition 2.1), or lies entirely in
its complement.

Cohen et al. [2021] observed that in the training of deep neural networks, the training loss exhibits
a cart-before-the-horse dynamic: sharpness steadily increases along the gradient descent trajectory
until it reaches the instability cutoff of 2/η (’Progressive Sharpening’). Once the trajectory crosses
this critical threshold, a phase transition occurs, and the sharpness stably hovers around 2/η, with the
loss decreasing albeit non-monotonically (’Edge of Stability’).

In this project, we review the empirical findings from Cohen et al. [2021] and provide an expository
summary of two theoretical papers on this topic. The first, Damian et al. [2022], shows that the
dynamics of gradient descent at the edge of stability follow a self-correcting mechanism where the
divergence of the iterate in Sbad forces the sharpness down and the trajectory back to Sgood. The
second, Li et al. [2022], attempts to explain the progressive sharpening phenomenon by analyzing
simple two-layer linear neural networks.

This presentation prioritizes clarity over exhaustive technical detail. To accurately yet succinctly
convey the core arguments of the two theoretical papers, we present the results under slightly stronger
assumptions. We will explicitly mention any assumptions added and succinctly describe how one
might extend the argument more generally.



The rest of this paper is structured as follows: in Section 2, we provide background on the connection
between sharpness and gradient descent. In Section 3, we cover the findings in Cohen et al. [2021]
and discuss related research. In Sections 4 and 5, we cover the arguments of Damian et al. [2022] and
Li et al. [2022] respectively.

2 Background

Throughout, we assume L : Rp −→ R is a three times continuously differentiable function we are
trying to minimize. We consider the trajectory (θt)

T
t=0 induced by running the gradient descent

algorithm on L with initial point θ0 ∈ Rp and θt+1 − θt := −η∇L(θt). As a first-order optimization
algorithm, the dynamics of gradient descent are fundamentally influenced by the curvature of the loss
function L. Specifically, these dynamics are closely tied to the evolution of sharpness:
Definition 2.1 (Sharpness of Loss Function). The sharpness at a point θ of L is defined as S(θ) :=
λmax(∇2L(θ)), where λmax denotes the largest eigenvalue of the Hessian matrix ∇2L(θ). If this
eigenvalue is unique, the corresponding eigenvector is denoted by u(θ).

The following lemma shows that, provided the learning rate is sufficiently small relative to S(θ), the
function L will decrease along the trajectory (θt)

T
t=0:

Lemma 1 (Descent Lemma). Suppose that S(θ) ≤ ℓ for any θ in an open set that contains the
trajectory {θt}Tt=0. Then, the following inequality holds:

L(θt+1)− L(θt) ≤ −η

2
(2− ηℓ)∥∇L(θt)∥2

Proof. Since S(θ) ≤ ℓ, L is ℓ-smooth. Therefore, we have:

L(θt+1)− L(θt) ≤ ∇L(θt)⊤(θt+1 − θt) +
ℓ

2
∥θt+1 − θt∥2

= −η∇L(θt)⊤∇L(θt) +
ℓ

2
η2∥∇L(θt)∥2

= −η∥∇L(θt)∥2 +
ℓ

2
η2∥∇L(θt)∥2

= −η

2
(2− ηℓ)∥∇L(θt)∥2

In other words, by considering a second-order approximation, Lemma 1 upper bounds the change in
L at each step by a quadratic function in η. The lemma guarantees a decrease in loss at any step if
η < 2/ℓ, and the right-hand side is minimized when η = 1/ℓ. This bound is tight, as the following
example shows:
Example 2.1. Consider a quadratic function L(θ) = 1

2θ
⊤Aθ where A is a positive semidefinite

matrix.

We can assume, without loss of generality, that A is diagonal. Let its eigenvalues be (λ1, . . . , λp) in
a descending order. Analyzing the trajectory of gradient descent, we have:

θt+1 = θt − η∇L(θt) = (I − ηA)θt = (I − ηA)tθ0.

this dynamics evolve independently along each hessian eigenvector:

∀k ∈ [p] θkt+1 = (1− ηλk)tθk0 .

If η > 2
λ1 , the first coordinate diverges exponentially, demonstrating the tightness of the descent

lemma’s bound. For any i, if η < 2
λi , the iterations θit+1 converge exponentially to the optimum.

Furthermore, for η < 1
λi , this convergence is monotonic, while for 1

λi < η < 2
λi , the iterations

oscillate as they converge. Directions of high curvature, corresponding to high eigenvalues, converges
faster than directions of low curvature

This quadratic toy case helps us reason more generally about the behavior of gradient descent on neural
networks. By considering the second-order Taylor approximation along the optimization trajectory,
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if the sharpness at step t, S(θt), exceeds 2/η, then the gradient descent iterates will diverge with
exponentially increasing magnitude in the direction of each Hessian eigenvector whose eigenvalue is
greater than 2/η. As long as S(θ) is smaller than this threshold throughout the optimization trajectory,
the loss provably drops in each iteration.

3 Edge of Stability
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Figure 1: We reproduce the empirical observations from Cohen et al. [2021], where we trained an
MLP network with two hidden layers of 200 units each and a smooth tanh activation function, on
a randomly selected subset of 5,000 images from the CIFAR-10 dataset (Krizhevsky et al. [2009]),
using the mean squared error (MSE) loss and full-batch gradient descent. During each step of the
gradient descent optimization, we measure the training MSE loss (Figure 1a) and the top eigenvector
of the training loss Hessian (Figure 1b, computed using the Lanczos algorithm, an adaption of the
power method). Training is stopped once the train accuracy exceeds 99%.

In training deep neural networks using gradient descent and many of its simple variations, practitioners
balance stability and convergence rate, while sharpness along the optimization path is a priori
unknown. In a very comprehensive empirical study, Cohen et al. [2021] identify two stages in the
dynamic of full-batch gradient descent on neural networks (see Figure 1):

• Progressive Sharpening: Initially, the training loss mostly decreases monotonically and
S(θt) consistently increases along the training trajectory. This phase continues until the
sharpness reaches the critical threshold of 2/η. Typically, with standard initialization
methods, the trajectory often starts from this phase. Moreover, the trajectory’s behavior of
increasing sharpness and decreasing loss closely parallels the dynamics seen in gradient
flow.

• Edge of Stability (EoS): In this phase, the sharpness stably hovers around 2/η and the train-
ing loss exhibits a non-monotonic yet gradually decreasing behavior over long timescales.

That is, the training loss exhibits a cart-before-the-horse dynamic: so long as the sharpness is small
enough for gradient descent to be stable, sharpness along the trajectory is consistently increasing.
Once the trajectory crosses the critical threshold, a phase transition occurs, leading to a self-correction
which deviates from the previously mentioned relationship and effectively prevents divergence. This
behavior, marked by a continuous increase in sharpness followed by self-stabilization, has been
observed across a variety of popular architectures and training datasets.

3.1 Related Work

Some aspects of Progressive Sharpening and EoS dynamics, such as the precise conditions under
which these phenomena occur, their existence under various optimization algorithms (e.g. Adam), and
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their connection to generalization performance, are still not fully understood. Theoretical explanations
for these phenomena remain elusive. In the subsequent sections, we will provide an explanation for
the second phase, EoS, under mild assumptions. To offer better context, we will first briefly review
the current research in this area.

Progressive Sharpening Observations. Progressive sharpening has been observed empirically by
several studies. Li et al. [2020] observed that by using normalization and weight decay, training
to near-zero loss inevitably leads to high sharpness. Complementing this, Cohen et al. [2021]
demonstrated that the EoS phenomenon can occur even in the absence of normalization. Gilmer et al.
[2021] extends these observations to stochastic gradient descent, examining the impact of learning
rates, architectural choices, and initialization on loss sharpness.

Empirical Observations of EoS Dynamics. Xing et al. [2018] reported that gradient descent eventually
enters a regime characterized by oscillations in the leading curvature direction, accompanied by
non-monotonic loss reduction. Similarly, Wu et al. [2018] found that the solutions attained by gradient
descent exhibit sharpness values approximately equal to 2/η. Jastrzebski et al. [2020] identified
a "break-even" point in the SGD trajectory, beyond which there is a regularization effect on loss
curvature. Additionally, Lewkowycz et al. [2020] argued that gradient descent could ’catapult’ into
flatter regions if the loss landscape around initialization is too sharp, proposing the "catapult phase"
as a regime parallel to EoS.

Non-Monotonic Loss in Various Settings. The non-monotonic behavior of loss has been noted in
diverse settings, e.g. Jastrzebski et al. [2020], Xing et al. [2018], Lewkowycz et al. [2020], Li et al.
[2022] and Arora et al. [2018].

Conditions and Characterizations of EoS. Ahn et al. [2022a] discusses unstable convergence in
gradient descent. Arora et al. [2022] connects modifications in gradient descent, such as normalized
GD or GD with weight decay, to minimizing gradient flow sharpness. Lyu et al. [2022] examines GD
entering EoS in normalized loss scenarios, emphasizing the sharpness reduction effect. Similarly, Ma
et al. [2022] shows that subquadratic growth around minimizers leads to 2-periodic trajectories in
GD, contributing to our understanding of EoS dynamics.

EoS in Specific Classes of Objectives. Research focusing on specific classes of objectives further
elucidates EoS mechanisms. Chen and Bruna [2022] investigates periodic behavior in models like
two-layer scalar networks, while Agarwala et al. [2022] examines squared quadratic functions. Ahn
et al. [2022b] studies 2-dimensional objectives, providing bounds on final sharpness as η decreases.
This exploration is complemented by Ma et al. [2022], who describe a quasi-static heuristic for
GD trajectories with oscillating components. Moreover, Zhu et al. [2022] and Li et al. [2022]
analyze simpler models. For instance, Zhu et al. [2022] examines a two-dimensional loss function
(x, y) 7→ (x2y2 − 1)2.

4 Self-Stabilization Dynamics

In this section, we aim to provide an overview of the study Damian et al. [2022]. This work seeks to
explain the dynamics of the gradient descent trajectory at the EoS using the cubic Taylor expansion
of the loss function, L. Let Sbad denote the set of unstable points:

Sbad := {θ | S(θ) ≥ 2/η}

and we denote its complement as Sgood. We assume that the gradient descent trajectory encounters
instability at some point. For notational simplicity, we shift time so that for θ0, it holds that
S(θ0) = 2/η.

Following empirical observations, we consider the case where only the leading eigenvalue of the
Hessian exceeds the critical value of 2/η, hence instability occurs along the top eigenspace only. We
further assume that gradient descent tends to increase sharpness further, i.e., gradient flow naturally
increases sharpness, i.e., ⟨∇S(θ0),∇L(θ0)⟩ < 0. Our goal now is to demonstrate that the trajectory
{θt}Tt=0 will stably hover between Sbad and Sgood. We show that as the iterates increase, the cubic
term of L acts to decrease the curvature, effectively restoring stability and allowing the trajectory to
exit Sbad.
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4.1 Setup

First, as mentioned, we assume that EoS occurs in a single unstable direction:
Assumption 1 (Eigengap). For some absolute constant c < 2, for all t, we have λ2(∇2L(θt)) < c/η.

This implies that S(θ) is differentiable. Let u be the leading eigenvector of ∇2L(θ0). In any small
neighborhood of θ0 within Sbad, the displacement θt − θ0 diverges along u, with increasing values of
|u⊤(θt − θ0)|. We track the movement of the iterates in this direction:

xt := u⊤(θt − θ0)

Analyzing the dynamics of gradient descent solely on t 7→ L(θ0 + t · u) does not suffice to capture
the dynamics of (θt) in the u direction. Specifically, we show that the movement of the components
of ∇S(θt) in the subspace spanned by other eigenvectors affects the dynamics of x by altering
the sharpness. Let Π⊥

u be the projection operator onto the orthogonal complement of the subspace
spanned by u. We track displacement along the Π⊥

u∇S(θ) direction:

yt := (Π⊥
u∇S(θ0))

⊤(θt − θ0)

Hence, the sharpness at time t is decomposed into the initial 2/η, yt, and the change along u:

S(θt) ≈
2

η
+∇S(θ0)

⊤(θt − θ0) =
2

η
+ ⟨∇S(θ0), u⟩u+ yt

We focus only on cases where sharpness increases as the algorithm progresses. Hence, we introduce
the assumption of progressive sharpening, although it is not essential for the subsequent analysis:
Assumption 2 (Progressive Sharpening). α(θ0) := −∇L(θ0)⊤∇S(θ0) > 0

Consider the Taylor approximation of ∇L up to the quadratic term around θ0:

P∇L(θt),2(θt) := ∇L(θ0) +∇2L(θ0)(θt − θ0) +
1

2
∇3L(θ0)(:, θt − θ0, θt − θ0) ((1))

Here, ∇3L(θ0)(:, θt − θ0, θt − θ0) denotes the operation of contracting the third-order derivative
tensor ∇3L(θ0) over its last two indices with the vector θt − θ0.

Next, decompose the change in trajectory into θt − θ0 = xtu+Π⊥
u (θt − θ0):

P∇L(θt),2(θt) = ∇L(θ0) +
(
xt∇2L(θ0)u+∇2L(θ0)Π⊥

u (θt − θ0)

)
+

1

2
∇3L(θ0)(:, θt − θ0, θt − θ0)

= ∇L(θ0) +
2

η
xtu+

1

2
x2
t∇3L(θ0)(:, u, u)

+
1

2
∇3L(θ0)(:,Π⊥

u (θt − θ0),Π
⊥
u (θt − θ0))

+ xt∇3L(θ0)(:,Π⊥
u (θt − θ0), u)

The cubic term is dominated by ∇3L(θ0)(:, u, u), which we can express in terms of change in
sharpness:
Lemma 2 (Self-Stabilization Property). For any θ ∈ Rp, where u(θ) denotes the top eigenvector of
∇2L(θ):

∇S(θ) = ∇3L(θ)(:, u(θ), u(θ))

Proof. Since L is thrice continuously differentiable, by definition, the tensor contraction of ∇3L(θ)
along (u(θ), u(θ)) yields the gradient of ∂2L

∂u2 (θ), which is equivalent to u(θ)⊤∇2L(θ)u(θ) =
S(θ).

We add another simplifying assumption to eliminate the constant component of P∇L(θt),2 along the
direction of u:
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Assumption 3. ⟨∇L(θ0), u⟩ = 0

i.e., ∇L(θ0) = Π⊥
u (∇L(θ0)). This assumption is relaxed in the paper by expanding the Taylor

expansion of L around the projection of θ0 onto Sbad ∩ {θ | ∇L(θ0)⊤u = 0}, and then bounding the
error.

Let β be the norm of the gradient of the sharpness at θ0: β = ∥Π⊥
u∇S(θ0)∥2. To bound the

error from approximating ∇L with the second-order Taylor polynomial, we also define ρ4 such
that ∥∇4L(θ)∥op ≤ ρ4 and r3 = maxt{x3

t , y
3
t }. We express the updates yt in terms of the Taylor

expansion P∇L(θ0),2(θt):

yt+1 − yt = ⟨Π⊥
u (∇S(θ0)), θt+1 − θt⟩ = −η⟨Π⊥

u (∇S(θ0)),∇L(θt)⟩

= −η⟨∇S(θ0),Π
⊥
u (P∇L(θ0),2(θt))⟩+O(η

√
βρ4r

3)

= ηα− 2xt⟨Π⊥
u (∇S(θ0)), u⟩ −

η

2
x2
tβ +O(η

√
βρ4r

3)

= η

(
α− x2

tβ

2

)
+O(η

√
βρ4r

3)

((2))

Similarly,

xt+1 = xt + ⟨u, θt+1 − θt⟩ = xt − η⟨u,∇L(θt)⟩

= xt − η ⟨u,∇L(θ0)⟩︸ ︷︷ ︸
=0, A.3

−2xt⟨u, u⟩ −
η

2
x2
t ⟨u,∇S(θ0)⟩ − ηxt⟨Π⊥

u (∇S(θ0)), u⟩+O(ηρ4r
3)

= −xt − ηxtyt +O(ηρ4r
3)

= −(1 + ηyt)xt +O(ηρ4r
3)

((3))

Finally, for our estimations of xt and yt, we informally assume that all higher-order terms are
negligible, implying xt, yt > Ω(ηρ4r

3). Combining Equations ((2)) and ((3)), we define:
Definition 4.1. We define the Predicted Edge of Stability dynamics as the discrete-time dynamical
system given by:

(xt+1, yt+1) := (−(1 + ηyt)xt, (αη − η

2
βx2

t ) + yt)

with initial conditions y0 = 0 and x0 > 0.

Under the assumptions above, the sequence {(xt, yt)}Tt=0 describes the gradient descent dynamics at
the edge of stability along the two directions of interest, up to an error term of the fourth order.

4.2 Analyzing the Dynamics

We now turn to qualitatively analyze the behavior of the sequence in Definition 4.1. The trajectory
(xt) behaves as the trajectory of gradient descent on a quadratic function with sharpness 2

η +yt (recall
Example 2.1). Hence, the trajectory (xt) is stable if and only if yt < 0. When yt > 0, xt diverges
exponentially with increasing absolute values. The sequence (yt) has a linear component ηα and
another component proportional to −x2

t .

Qualitatively, we identify four distinct stages (see Figure 2):

1. Progressive Sharpening: When |xt| is small, yt is dominated by the linear component:
yt ≈ ηα · t. By Assumption 2, the sharpness begins to increase at a rate proportional to η.

2. Destabilization: As yt > 0, (xt) begins to diverge, behaving like:

xt+1 =

t∏
i=0

(−1)i(1 + ηyi)x0
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(a) Progressive Sharpening

xt = u, t 0

y t
=

S,
t

0

(b) Destabilization

xt = u, t 0

(c) Self-Stabilization

xt = u, t 0

(d) Return to Stability

xt = u, t 0

t = 0 t = T
Time

(e) Change in Sharpness

Time

y t
=

S,
t

0 y =
t

(f) Displacement in Top Eigenvector

Time

x2 t
=

u,
t

0
2

Figure 2: The dynamics at the edge of stability: we simulated the temporal progression of the
predicted sequence {(xt, yt)}Tt=1 with the initial conditions y0 = 0 and x0 > 0; to visualize four
phases. In the initial phase (Figure 2a), the sharpness surpasses the critical threshold (yt > 0). xt is
still small and hence the change in sharpness is proportional to ηα. Subsequently, the displacement
along the principal eigenvector of the Hessian begins to diverge, with xt exhibiting increasingly
higher values of alternating signs (Figure 2b). Once xt becomes sufficiently large, sharpness begins
to decrease until we return to stability (Figure 2c). Finally, as yt assumes negative values (Figure 2d),
xt begins to decrease in absolute value and the dynamics revert back to Progressive Sharpening.
In Figures 2e and 2f illustrate the self-correcting behavior of this dynamical system: when x2

t assumes
larger values, yt is pushed to negative values as a result of the cubic term in of ∇L(θt).

with alternating sign at each step and exponentially increasing values. The loss also increases
rapidly:

L(θt)− L(θ0) ≈ ∇L(θ0)(θt − θ0) +
1

2
(θt − θ0)

⊤∇2L(θ0)(θt − θ0) ≈
1

η
x2
t

3. Self-Stabilization: As x2
t grows larger, the quadratic component of yt becomes more

significant. yt peaks when xt =
√

2α
β . Afterwards, the sharpness begins to decline. While

the iterates diverge in the u direction, the strength of the movement in the −∇S(θ) direction
forces the sharpness down. Here, α serves as a destabilizing force that locally increases
sharpness, while β stabilizes.

4. Return to Stability: Eventually, yt becomes negative, and the sharpness returns to a stable
level. As xt diminishes, the αη · t component of yt dominates once more, leading back to
progressive sharpening.

In essence, the dynamics analyzed here form a negative feedback loop, aligning with the empirical
observations made by Cohen et al. [2021]. As the algorithm enters regions of excessive sharpness,
marked by the divergence of the iterates, the third-order term in the Taylor expansion of the loss
function becomes predominant. This term acts to steer the trajectory back to Sgood. This cyclical
process, characterized by stages of increasing sharpness followed by self-correction, effectively
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serves as a self-correcting mechanism, hence the term ’self-stabilization’. It ensures that the trajectory
of gradient descent remains stable, oscillating between Sgood and Sbad.

5 Linear models

In this section, we provide an overview of Li et al. [2022]. The objective is to demonstrate that
sharpness increases along the gradient descent trajectory until it reaches a critical threshold, within the
context of a two-layer linear neural network model. The central argument unfolds as follows: Initially,
it is asserted that the sharpness is primarily influenced by the norm of the weights in the second
(output) layer. Subsequently, we analyze the update equation for the norms of these second-layer
weights during the training process. A key element of this update rule is the negative inner product
between the network’s predictions and the residual, which is identified as the main factor influencing
sharpness changes. The escalation in sharpness is contingent on this inner product remaining negative.
As long as this condition persists, both the norm of the second-layer weight and the sharpness continue
to increase.

5.1 Setup

Consider a two-layer neural network f : Rd −→ R with linear activation functions, given by:

f(x) =
1√
m
A⊤Wx,

where W ∈ Rm×d are the weights of the hidden layer, and A ∈ Rm is the weight vector for the
output layer. Let θ denote the set of all trainable parameters, θ = (W,A). The training data matrix
is represented as X ∈ Rd×n, and the corresponding label vector is Y ∈ Rn, with each yi = ±1 for
i ∈ [n]. Assume X⊤X has rank r, and decompose Σ := X⊤X into an orthonormal basis {vi} of
the eigenvectors of Σ =

∑r
i=1 λiviv

⊤
i , where vi is associated with the i-th largest eigenvalue λi of

X⊤X . It is assumed that the data is normalized such that ∥X⊤X∥ = Θ(n).

Define F = ((f(xi))i∈[n] as the vector of outputs and D as the vector of residuals during training,
D = F − Y . The subscript t is used to denote the state of variables at time t (e.g., Dt, Ft,
etc.). The mean square error (MSE) is considered as the loss function during training, defined as
L(A,W ) = 1

n∥D∥2.

Denote by G the Gauss-Newton matrix of L ◦ f at θ:

n−1
n∑

i=1

∂f(xi, θ)

∂θ

⊤
∂f(xi, θ)

∂θ

Empirical evidence (e.g., Papyan [2019]) shows that the sharpness, the top eigenvalue of ∇2
θL(f(θ)),

is roughly the top eigenvalue of G: ||G|| ≈ ||∇2
θL(f)||. Let M denote the Gram matrix, defined as

M =
2

n

∂F (θ)

∂θ

∂F (θ)

∂θ

⊤
.

Notice that G and M have the same non-zero eigenvalues. Thus, we assume for this analysis that
considering M alone is sufficient:

Assumption 4. For all t, S(θt+1) > S(θt) if and only if λ1(Mt+1) > λ1(Mt).

For simplicity, S(θt) is is redefined as λ1(Mt). In our case,

Mt =
2

mn

(
||At||2Σ+X⊤W⊤

t WtX
)

That is, Mt has two components: the first is proportional to Σ with a magnitude proportional to
the norm of the second-layer weights, and the second is the covariance matrix of the second layer’s
pre-activation.
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5.2 Simplifying the Problem

Next we show that under mild assumptions, it suffices to show that v⊤1 Mtv1 is increasing with t to
show progressive sharpening.

Assumption 5. There exists some constant c > 0 such that for any t:

||X⊤WtWtX − m

d
Σ|| ≤ cn

2

This assumption could be weakened, as shown in the paper. Moreover, this has been validated
empirically (see Appendix D.2.2 in their paper). This means that Mt ≈ 2

mn (||At||2 + m
d )Σ.

Lemma 3. S(θt) ≥ v⊤1 Mtv1 ≥ S(θt)− 2c
m

Proof. Clearly S(θt) ≥ v⊤1 Mtv1. Conversely, let u the leading eigenvector of M and Γt the matrix
2

mn (X
⊤WtWtX − m

d Σ). Notice that now Mt − Γt is a scalar multiplication of Σ. Then:

v⊤1 Mtv1 = v⊤1 (Mt − Γ)v1 + v⊤1 Γtv1
A.5
≥ u⊤(Mt − Γu)u+

c

m

≥ u⊤Mtu+
2c

m
= S(θt) +

2c

m

Hence, we reduce the problem to show that v⊤1 Mtv1 is increasing.

5.3 Analyzing the Dynamics

In this subsection we analyze the progression of (Dt)t∈[T ], (||At||2)t∈[T ] and (Mt)t∈[T ]. The update
rule under gradient descent is:

At+1 −At = −η
∂L(F (θ), Y )

∂At
= − 2η

n
√
m
WtXDt

Wt+1 −Wt = −η
∂L(F (θ), Y )

∂Wt
= − 2η

n
√
m
AtD

⊤
t X

⊤

Lemma 4 (The Dynamics of the Error). The update rule for the residual vector Dt is given by:

Dt+1 −Dt = −ηD⊤
t Mt +

4η2

n2m
⟨Ft, Dt⟩D⊤

t Σ

Proof. We expand D⊤
t+1 −D⊤

t as follows:

D⊤
t+1 −D⊤

t =
1√
m
(A⊤

t+1Wt+1 −A⊤
t Wt)X

=
1√
m
((A⊤

t+1 −A⊤
t )Wt+1 +A⊤

t (Wt+1 −Wt))X

=
1√
m
((A⊤

t+1 −A⊤
t )Wt +A⊤

t (Wt+1 −Wt))X +
1√
m
(A⊤

t+1 −A⊤
t )(Wt+1 −Wt)X

= − 2η

nm

(
D⊤

t X
⊤W⊤

t Wt + ||At||2D⊤
t X

⊤
)
X +

4η2

n2m
√
m
(WtXDt)

⊤AtD
⊤
t X

⊤X

= −ηD⊤
t Mt +

4η2

n2m
⟨Ft, Dt⟩D⊤

t Σ

By assuming overparameterization m > n (along with the assumption that ||Σ|| = Θ(n)), we ignore
the second term and assume: D⊤

t = D⊤
0

∏
t′∈[t](I − ηMt′). Moreover, we assume symmetric
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initialization such that the output vector is initialized F0 = 0 and thus D0 = −Y , leading to an
analogue of Example 2.1:

Dt = −Y
∏
t′∈[t]

(I − ηMt′) ((4))

Consider the norm of the second layer, ||At||2:

||At+1||2 − ||At||2 = ||At − η
∂L
∂A

(At)||2 − ||At||2

= −2ηA⊤
t

∂L
∂A

+ η2||∂L
∂A

||2

= −4η

n
⟨Ft, Dt⟩+ η2||∂L

∂A
||2

Lemma 5 (The Dynamics of the Gram Matrix). The update rule of Mt is,

Mt+1 −Mt = − 4η

n2m

(
2⟨Ft, Dt⟩Σ+ FtD

⊤
t Σ− ΣDtF

⊤
t

)
+

8η2

n3m2

(
||WtXDt||2Σ+ ||At||2ΣDtD

⊤
t Σ

)
The change in Mt is decomposed into two terms: the first which is the result of the change in ||At||2,
and a second which is dominated by the first. This shows that the dynamics of the sharpness is closely
realted to the dynamics of ||At||2, i.e. dependent on −⟨Dt, Ft⟩.

Proof. By the update rule of At and Wt we have:
mn

2
(Mt+1 −Mt) = (||At+1||2 − ||At||2)X⊤X +X⊤(Wt+1W

⊤
t+1 −W⊤

t Wt)X

=

(
−4η

n
⟨Dt, Ft⟩+ η2||∂L

∂A
||2

)
X⊤X

+X⊤((W⊤
t+1 −W⊤

t )Wt +W⊤
t (Wt+1 −Wt))X

+X⊤(W⊤
t+1 −W⊤

t )(Wt+1 −Wt)X

= −4η

n
⟨Dt, Ft⟩Σ+

4η2

n2m
||WtXDt||2Σ

− 2η

n
(FtD

⊤
t Σ+ ΣDtF

⊤
t ) +

4η

nnm
||At||2ΣDtD

⊤
t Σ

and the result follows.

Let vi be an eigenvector of X⊤X with eigenvalue λi > 0. Then, using Lemma 5:

v⊤i (Mt+1 −Mt)vi = −8λiη

n2m

(
⟨Ft, Dt⟩+ ⟨vi, Ft⟩⟨Dt, vi⟩

)
+

8λiη
2

n3m2

(
||WtXDt||2︸ ︷︷ ︸

≥0

+λi||At||2⟨vi, Dt⟩2︸ ︷︷ ︸
≥0

)

≥ −8λiη

n2m

(
⟨Ft, Dt⟩+ ⟨vi, Ft⟩⟨Dt, vi⟩

)
The primary component in the update equation of the second-layer weight norm is the negative inner
product between the network’s predictions and the residual, ⟨Ft, Dt⟩. As long as the inner product
between predictions and residual is consistently negative, it leads to an increase in the second-layer
weight norm, thus resulting in progressive sharpening. By Equation (4) and Ft = Y +Dt, we get
that as long as λ1(Mt) < 2/η, ⟨Dt, Ft⟩ < 0.
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