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1 Introduction

Diffusion models, collectively introduced in the past 5 or so years through [SDWMG15, SE20, SSDK+21,
HJA20], have revolutionized the field of generative modeling, now well known in the form of DALL-E for
the task of image synthesis. Supplanting generative adversarial networks as the state of the art in this field,
the intuition behind their inner workings is quite different from their predecessors. Diffusion models are
trained by corruptting samples from a target distribution with increasing levels of noise, and then learning
the denoising process. This then enables one to sample from the target distribution by running the denoising
process on samples of pure noise.

While practical usage of diffusion models has taken off, yielding visibly impressive results, our theo-
retical understanding of them remains rather nascent. Here, we overview recent results surrounding the
non-asymptotic convergence of diffusion models. The main result is that of [BBDD23], which shows that

Õ
(

d log2(1/δ)
ϵ2

)
steps are necessary to arbitrarily approximate a δ-noised version of any data distribution on

Rd within ϵ2, measured by KL divergence, assuming one has access to a sufficiently accurate score estimator.
This work builds on a recent body of literature including [CLL23, CCL+23, LLT23] which offer looser results
on the convergence rates of diffusion models. We overview in depth both the theoretical tools used in these
works to analyze diffusion models, the proof of the major result itself, as well as the practical implications
of the results.

We begin with an overview of the theoretical model of diffusion in Section 2. We then describe the main
proof technique of [BBDD23] and comment that previous works such as [CLL23] use similar methods in
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Section 3. Here, we highlight the role of the stochastic localization in yielding the improved bounds, and
in Section 4, we give a self-contained overview of the relevant theory needed to obtain those results. In
particular, we will explore the proofs of Propositions 1 and 2 of [BBDD23], which are the main tools through
which they managed to achieve tighter bounds; .

2 Diffusion Models

In this section, we first introduce the basic principles of diffusion models.
The main idea behind diffusion models is to corrupt samples with noise, and then learn the denoising

process. Running the denoising process on pure noise should then yield samples from the target distribution.
Formally, suppose that we have some data distribution pdata supported on Rd from which want to generate
more samples. Consider the following Rd-valued stochastic process: we initialize X0 ∼ pdata and then run
an SDE of the form

dXt = F (t,Xt)dt+
√
g(t)dBt (1)

on t ∈ [0, T ]. In our setting, we choose the coefficients of the OU process, i.e.,

dXt = −Xtdt+
√
2dBt. (2)

The reason this choice is canonical is because the formal solution to this SDE is given by

Xt = X0e
−t +B1−e−2t , (3)

so that this process converges exponentially quickly (in some norm) to B1 ∼ N(0, Idd). This, along with the
fact that the transition densities of the OU process have closed analytic form, make it a convenient choice.

The stochastic prescribed in (2) known as the forward process. Our goal is to learn the dynamics of the
reverse process Yt := XT−t, which satisfies the following SDE

dYt = (Yt + 2∇ log qT−t(Yt)) dt+
√
2dB′

t, Y0 ∼ qT , (4)

with qt being the the marginal distribution of Xt and B′
t is another Brownian motion on the same space.

That the reverse process satisfies this SDE is proven in Section 4. If the quantities in (4) were known, then
to sample from pdata, we need only sample Y0 ∼ qT and run the reverse dynamics, outputting YT ∼ pdata.

We also introduce the notation mt(xt) = Eq0|t(x0|xt)[x0] and Σt(xt) := Covq0|t(x0|xt)(x0) to be the
expectation and variance of x0 under the conditional distribution given xt.

3 Main results of [BBDD23]

3.1 Informal Main Theorem

The core idea underlying all of [BBDD23, CLL23, CCL+23] is to start with a sample from N(0, Idd) and
simulate the reverse process in Equation (4) as best possible. There are three main sources of error when
using this as an approximation for the distribution pdata.

1. The first source of error comes from the fact that Equation (4) uses ∇ log qT−t(Yt), the score. We do
not have access to these quantities because the true distribution pdata is unknown, and thus must use
some approximation to the score function. Formally, we let sθ(x, t) be an approximation of ∇ log qt(xt)
that is a sufficiently close in the sense that the quantity

L(sθ) =
∫ T

0

Eqt(xt)

[
∥sθ(xt, t)−∇ log qt(xt)∥2

]
dt (5)

is bounded by some ϵ2score. We will refer sθ(x, t) as the “score estimator”. In practice, we gain access
to such an estimator by training one on data samples.
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2. Because we do not have access to qT to initialize the reverse process, we instead start with p0 ∼
πd := N(0, Idd). As noted above, because we chose the OU process we know that as T −→ ∞, qT
approaches N(0, Idd) exactly. However, we are working with finite T , and therefore XT will not exactly
be distributed according to πd. Fortunately, the convergence rate is fast enough that we can easily
bound this source of error.

3. Simulating a continuous time process exactly is computationally impossible, and therefore we must
approximate the continuous process with a discretization. This discretization will include N points
0 = t0 < t1 < · · · < tN ≤ T . Note that the step size will be denoted γk = tk+1 − tk. The approximate
reverse process is then given by

dŶt = {Ŷt + 2sθ(Ŷtk , T − tk)}dt+ dB̂t. (6)

The key contribution of [BBDD23] relative to [CLL23] is that they prove a tighter bound on the error
caused by discretization using results from stochastic localization. This allows [BBDD23] to achieve
stronger bounds relative to other recent papers.

In addition to these three approximations, instead of approximating pdata = q0 which is the goal of this
problem, we will instead approximate qδ. In other words, we will perform “early stopping” and end the
process pn at time tN = T − δ. Such an approximation is allowed and standard in many of these works
because for small δ, qδ and pdata are close.

Our goal in this project is then to describe the proof of the following main result of [BBDD23], stated
informally below:

Theorem 3.1 ([BBDD23, Theorem 1], informal). Assuming a “sufficiently accurate” score estimator, there
exists a sequence of discretization times t1, . . . , tN such that

KL(qδ∥ptN ) = O(ϵ2), (7)

with N at most Õ
(

d log2(1/δ)
ϵ2

)
.

Recall that ptN is the output of the algorithm described above, which we want to be a good approximation
of pdata (but we will settle for being a good approximation of qδ. The interpretation of this theorem is that the

distance between qδ and pTn can get as close as the accuracy of the score estimator with only Õ
(

d log2(1/δ)
ϵ2

)
steps. Therefore, the constraining factor in designing better diffusion models does reduce to simply designing
better score estimators.

3.2 Formal Results of [BBDD23]

Theorem 3.2 ([BBDD23, Theorem 1]). Suppose sθ(x, t) satisfies

N−1∑
k=0

γk Eqtk (x)

[
∥∇ log qT−tk(x)− sθ(x, T − tk)∥2

]
≤ ϵ2score (8)

Further assume that pdata is normalized such that Cov(pdata) = Idd, T ≥ 1, and there exists κ > 0 such
that for k = 0, ..., N − 1 we have γk ≤ κmin{1, T − tk+1}. Then

KL(qδ ∥ ptN ) ≤ ϵ2score︸ ︷︷ ︸
Error 1

+κ2dN + κdT︸ ︷︷ ︸
Error 3

+ de−2T︸ ︷︷ ︸
Error 2

(9)

where d is the dimension of pdata.

Note that in Theorem 3.2, we explicitly can separate the error terms in the KL divergence as being caused
by the three sources of error we listed above. The additional variable κ introduced in the theorem forces an
exponential decay in the step size near the end of the reverse process and can be viewed as simply a control
on the discretization that allows for tighter bounds.
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In order to transition from Theorem 3.2 to the informal theorem statement, we need a choice of κ,N, T

that satisfy the necessary step inequality. To do this, they take T = 1
2 log(d/ϵ

2
score) andN = Θ

(
d(T+log(1/δ))2

ϵ2score

)
and κ = Θ

(
T+log(1/δ)

N

)
. The choice of discretization steps γk that satisfy γk ≤ κmin(1, T − tk+1) will be

taking the first half of the times to be equally spaced between [0, T − 1]. The other half of the times will
then be exponentially spaced in the remaining distance between [T − 1, T − δ] with spacing starting at κ

1+κ

and decaying by 1
1+κ with each time step.

3.3 Proof Sketch of Theorem 3.2

As somewhat discussed in class, the general method for proofs of this nature is to instead reduce this problem
to comparing the path measures of the true and approximate reverse processes, rather than just the measures
of the termination point. With that in mind, let Q be the path measure of the true reverse process (4),
initialized at qT , let P

πd be the path measure of the approximate reverse process (6) which is initialized at
πd (recall πd = N(0, Idd), and let P qT be the path measure of the approximate reverse process initialized
via qT . We only consider paths up to time T − δ for each of these processes, as we are only interested in
approximating qδ.

First, note that the data processing inequality yields

KL(qδ∥ptN ) ≤ KL(Q∥Pπd). (10)

The data processing inequality simply states that given a conditional distribution PY |X and two distributions
PX and QX over X, and PY (resp QY ) is a distribution over Y formed by first sampling X according to PX

(resp QX), then one has KL(PX∥QX) ≥ KL(PY ∥QY ). The intuition for this is that one can simply regard
PY |X as a stochastic function taking in inputs x; then essentially the DPI states that one cannot increase
the KL divergence of two distributions by applying the same stochastic function to each of their outputs.
Here, PY |X is given simply as reading off the value of the path at time tN = T − δ.

In the following sections, we sacrifice rigor for intuition, especially when explaining topics from stochastic
calculus.

3.3.1 Moving between approximate and true reverse processes - Girsanov’s theorem

The first important step is controlling the difference between the true and approximate reverse paths using
Girsanov’s theorem. We first review Girsanov’s theorem itself:

Proposition 3.1 (Girsanov’s Theorem). Suppose we have a filtered probability space (Ω,F , (Ft)t≥0, Q) and

that (bt)t∈[0,T ] is a previsible process such that EQ[
∫ T

0
∥bs∥2 ds] < ∞. Let Lt =

∫ t

0
bs dBs. Then Lt is a

square integrable Q-martingale. Moreover, let

E(L)t = exp

{
Lt −

1

2
⟨L⟩t

}
= exp

{∫ t

0

bs dBs −
1

2

∫ t

0

∥bs∥2 ds

}
, (11)

be the stochastic exponential of Lt, where ⟨L⟩t denotes the quadratic variation of the process L, detailed
in Section 4. Assuming that EQ[E(L)T ] = 1, then E(L) is also a Q-martingale. Furthermore, a probability
measure P can then be defined on (Ω,F , (Ft)t≥0) such that the Radon-Nikodym derivative dP

dQ is given by

E(L)T (i.e. P = E(L)TQ). Then, the process

βt = Bt −
∫ t

0

bs ds (12)

is a P -Brownian motion.

Essentially, Girsanov’s theorem enables us to define a tilted measure under which a different process is a
Brownian motion; importantly, this process has a nonzero drift under the original measure (the drift being∫ t

0
bs ds). Thus, in some sense, Girsanov’s theorem enables us to change the “mean” of the process to some

prescribed form.
We now move to proving the bound between the true and approximate reverse paths:
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Proposition 3.2 ([BBDD23, Proposition 3]). Let Q and P qT be the path measures of the solutions to (4)
and (6) respectively, both started in Y0 ∼ qT and run from t = 0 to t = tN . Assume that

N−1∑
k=0

∫ tk+1

tk

EQ[∥∇ logT−t(Yt)− sθ(Ytk , T − tk)∥2] dt < ∞. (13)

Then, we have

KL(Q∥P qT ) ≤
N−1∑
k=0

∫ tk+1

tk

E[∥∇ log qT−t(Yt)− sθ(Ytk , T − tk)∥2] dt. (14)

Proof. We give an informal proof of this proposition. We take (B′
t)t≥0 to be our Q-Brownian motion and

define the process

bt =
√
2 (sθ(Ytk , T − tk)−∇ log qT−t(Yt))

for t ∈ [tk, tk+1] and each k = 0, . . . , N − 1. bt is previsible (this is not immediately clear to us, since it
involves Yt, but it is probably because the natural filtration is left-continuous). Moreover, bt satisfies

EQ

[∫ tN

0

∥bs∥2 ds

]
= 2

N−1∑
k=0

∫ tk+1

tk

EQ[∥∇ log qT−t(Yt)− sθ(Ytk , T − tk)∥2] dt < ∞

by assumption, and thus first assumption of Girsanov’s theorem are satisfied. Then if we define Lt =∫ t

0
bs dB′

s, then (E(L))t∈[0,T ] is a continuous local martingale.
We will assume that it is in fact a continuous martingale. There are some ways to get around this

(discussed at the end), but this simplifies the argument.
Following Girsanov’s theorem, we define the new probability measure P = E(L)tNQ and the new process

βt = B′
t −
∫ t

0

bs ds

such that (βt)t∈[0,tN ] is a P -Brownian motion. Furthermore, note that by Itô’s lemma (see Section 4 for
explanation of Itô’s Lemma), we have

dβt = dB′
t − bt dt.

Since the SDE of the true reverse process (4) holds almost surely under Q, we have that, using the above
and the definition of bt,

dYt = (Yt + 2∇ log qT−t(Yt)) dt+
√
2 dB′

t

= (Yt + 2sθ(Ytk , T − tk)) dt+
√
2 dβt.

Note that under the measure P , this is exactly the approximate reverse process (6), as βt is a P -Brownian
motion. Moreover, by construction of P , we now have

KL(Q∥P ) = EQ

[
log

dQ

dP

]
= −EQ[log E(L)tN ]

= EQ[−LtN +
1

2

∫ tN

0

∥bs∥2 ds] =

N−1∑
k=0

∫ tk+1

tk

EQ[∥∇ log qT−t(Yt)− sθ(Ytk , T − tk)∥2] dt

where the last line is by the fact that Lt is a martingale.
It turns out we can remove the assumption of E(L)t being a continuous martingale and just work with it

being a continuous local martingale by considering a sequence of times Tn → tN and truncating the process
βt. The argument is technical and does not improve the intuition and is the reason for the inequality in 14
rather than the equality attained above.

Essentially, what has occurred here is that the difference between the approximate and true reverse
processes is given up to scale by bs, a previsible process. Using Girsanov’s theorem, we are able to produce
another measure under which this shifted process is a Brownian motion, and in fact it allows us to directly
characterize the KL divergence, since it explicitly gives us the form of the Radon-Nikodym derivative.
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This result then not only gives us this explicit bound, but also shows that Q is absolutely continuous
with respect to Pπd . Note that P qT and Pπd have the same dynamics and instead only differ in their choice
of starting distribution. Hence, conditioned on the value of the process at time 0, their densities are equal,
meaning

dP qT

dPπd
(y) =

dqT
dπd

(y0).

It then follows that
dQ

dPπd
(y) =

dQ

dP qT
(y)

dP qT

dPπd
(y) =

dQ

dP qT
(y)

dqT
dπd

(y0)

and we hence have
KL(Q∥Pπd) = KL(Q∥P qT ) + KL(qT ∥πd). (15)

Combining 10, 15, and Prop 3.2 now yields

KL(qδ∥ptN ) ≤
N−1∑
k=0

∫ tk+1

tk

E[∥∇ log qT−t(Yt)− sθ(Ytk , T − tk)∥2] dt+KL(qT ∥πd), (16)

and passing through the triangle inequality yields

≤ 2

N−1∑
k=0

γkEQ[∥∇ log qT−tk (Ytk)− sθ (Ytk , T − tk)∥2
]

︸ ︷︷ ︸
Error 1

+ 2

N−1∑
k=0

∫ tk+1

tk

EQ

[
∥∇ log qT−t (Yt)−∇ log qT−tk (Ytk)∥

2
]
dt︸ ︷︷ ︸

Error 3

+KL(qT ∥πd)︸ ︷︷ ︸
Error 2

(17)

Bounding each of these terms is then the remainder of the proof, and they each contribute to each of the
errors.

3.3.2 Error from score estimator and from qT (Errors 1 and 2)

Note that the first term is exactly ϵ2score, the error of our score estimator.
Next, we bound the approximation error from starting with normal distribution as opposed to qT . Under

the regularity assumptions, we have the following Lemma.

Lemma 3.3. For T ≥ 1, under the assumed regularity conditions we have

KL(qT ∥πd) ≲ de−2T (18)

Proof. Sketch: Note that qT (x) can be written as
∫
Rd qT |0(x | x0)pdata(dx0), and that since the forward

process is the OU process, we know the form of qT |0 to be N(e−tx0;σ
2
t Idd). Then, because the KL divergence

is convex in the first argument, KL(qT ∥πd) ≤ Ex0∼pdata
[KL(qT |0(· | x0)∥πd)]. The KL divergence between

two Gaussians also has a closed form, and ultimately this evaluates to −d log(1− e−2T ) ≲ de−2T , where we
utilize the normalization condition Cov(pdata) = Idp.

This lemma directly gives the desired bounds on Error 2.

3.3.3 Bounding discretization error (Error 3)

The final and novel step of [BBDD23] a refinement in the bound of the discretization error (Error 3), which
we recall is the error caused by taking discrete time steps instead of continuously reconstructing the reverse
process. As written above, this error is bounded as

N−1∑
k=0

∫ tk+1

tk

EQ

[
∥∇ log qT−t(Yt)−∇ log qT−tk(Ytk)∥2

]
dt ≤ κ2dN + κdT (19)

This is where the key stochastic localization lemma below is used.
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Lemma 3.4 (Application of Stochastic Localization). For all t > 0, if σ2
t = 1− e−2t, then

σ3
t

2σ̇t

d

dt
E[Σt] = E[Σ2

t ] (20)

Recall as defined above that Σt is the covariance of the conditional distribution of X0 given Xt. This
algebraic result is key in obtaining the strong bound on discretization error in Equation (19). While the
exact application is buried within the mathematical calculations, the key idea is that it is easier to work
with Σt rather than Σ2

t , and this Lemma allows us to substitute one for the other.
We proceed with a sketch of the proof. Instead of thinking of two separate processes (Yt)t∈[0,T ] and

(Ŷt)t∈[0,T ] which are solutions to (4) and (6) respectively, under the same probability measure, we instead
consider a single process (Yt)t∈[0,T ] where under a probability measure Q it is a solution to (4) but under
a measure Pπd , it is a solution to (6). One way to think about how this is possible is that in the first way
of thinking about the two processes, each of (Yt)t∈[0,T ] and (Ŷt)t∈[0,T ] induce measures on paths, and thus
we can simply take Q and Pπd to be the induced path measures and the probability space to be over these
paths. Additionally, we define P qT to be the measure under which (Yt)t∈[0,T ] is a solution to (6), where Y0

is instead initialized according to qT rather than πd.
Note that in the sum we want to control, we are essentially dealing with expectations of differences of

the form
Es,t = EQ[∥∇ log qT−t(Yt)−∇ log qT−s(Ys)∥2] s < t (21)

Since we expect the score to evolve slowly, we should be able to bound this quantity pointwise (for fixed
t, s). One way we might try to do this is to control the time derivative of Es,t. With this in mind, regarding
t as evolving forward and s fixed, we apply Itô’s lemma (see Section 4) to ∇ log qT−t(Yt) − ∇ log qT−s(Ys)
to obtain the following result:

Lemma 3.5 ([BBDD23, Lemma 2]). If (Yt)t∈[0,T ] is the solution to the SDE (4) and s ∈ [0, T ) is fixed, then
we have

d(∥∇ log qT−t(Yt)−∇qT−s(Ys)∥2)
= −2∥∇ log qT−t(Yt)−∇ log qT−s(Ys)∥2 dt− 2(∇ log qT−t(Yt)−∇ log qT−s(Ys)) · ∇ log qT−s(Ys) dt

+ 2
∥∥∇2 log qT−t (Yt)

∥∥2
F

dt+ 2
√
2 {∇ log qT−t (Yt)−∇ log qT−s (Ys)} · ∇2 log qT−t (Yt) · dB′

t (22)

for all s ≤ t < T .

Proof. Sketch: One applies Itô’s lemma to ∇ log qT−t(Yt) and ∥∇ log qT−t(Yt)) − ∇ log qT−s(Yt)∥2, as well
as using the Fokker-Plank equation for the forward process to compute d(∇ log qt)(x)/dt. Combining terms
and simplifying yields the above result.

We then take expectations and integrate (22), followed by differentiating with respect to t to obtain

dEs,t

dt
= −2EQ[∥∇ log qT−t(Yt)−∇ log qT−s(Ys)∥2]

+ 2EQ[(∇ log qT−s(Ys)−∇ log qT−t(Yt)) · ∇ log qT−s(Ys)] + 2Eq[∥∇2 log qT−t(Yt)∥2F ]

Applying AM-GM to the middle term:

≤ EQ[∥∇ log qT−s(Ys)∥2] + 2EQ[∥∇2 log qT−t∥2F ] (23)

Thus it suffices to bound these two terms separately, and then integrate back out over t. To this, we rely on
the following lemma:

Lemma 3.6 ([BBDD23, Lemma 3]). For all t > 0, ∇ log qt(xt) = −σ−2
t xt + e−tσ−2

t mt and ∇2 log qt(xt) =
−σ−2

t Idd + e−2tσ−4
t Σt, where σ2

t = 1− e−2t.

Proof. The first portion is actually just Tweedie’s formula (up to rescaling and rearrangement), since, using
the transition densities for the OU process, we see that xt | x0 ∼ N(e−tx0, σ

2
t Idd), which we discussed in

class. The proof of the second portion just involves swapping integrals and derivatives.

7



Now, the first term in (23) can be controlled using the first part of Lemma 3.6 through a Nishimori-style
trick, yielding EQ[∥∇ log qT−s(Ys)∥2] ≤ dσ−2

T−s. The important portion is the bounding of the second term,
which involves the use of Lemma 3.4.

Let σ̇t denote the time derivative of σt. The, using the second part of Lemma 3.6 and expanding, we
have

Eqt(xt)[∥∇
2 log qt(xt)∥2F )] = dσ−4

t − 2σ̇tσ
−5
t E[Tr(Σt)] + σ̇2

t σ
−6
t E[Tr(Σ2

t )].

Crucially, Lemma 3.4 then yields
σ4
t

2e−2t

d

dt
E[Tr(Σt)] = E[Tr(Σ2

t )],

and substituting this above obtains

Eqt(xt)

[∥∥∇2 log qt (xt)
∥∥2
F

]
= dσ−4

t − 2σ̇tσ
−5
t E [Tr (Σt)] +

1

2
σ̇tσ

−3
t

d

dt
E [Tr (Σt)]

Using 0 ≤ σtσ̇t ≤ 1:

≤ dσ−4
t +

1

2

d

dt

(
σ−4
t E [Tr (Σt)]

)
This immediately yields

EQ

[∥∥∇2 log qT−t (Yt)
∥∥2
F

]
≤ dσ−4

T−t −
1

2

d

dr

(
σ−4
T−rE [Tr (ΣT−r)]

)∣∣∣∣
r=t

giving the complete bound

EQ

[
∥∇ log qT−s (Ys)∥2

]
+ 2EQ

[∥∥∇2 log qT−t (Yt)
∥∥2
F

]
≤ dσ−2

T−s + 2dσ−4
T−t︸ ︷︷ ︸

E
(1)
s,t

− d

dr

(
σ−4
T−rE [Tr (ΣT−r)]

)∣∣∣∣
r=t︸ ︷︷ ︸

E
(2)
s,t

.

We now integrate back out over t. Recall this expression is an upper bound on
dEs,t

dt , and thus

Etk,t ≤
∫ t

tk

E
(1)
tk,s

+ E
(2)
tk,s

ds. (24)

The remainder of the proof is mostly computational. We can write

N−1∑
k=0

∫ tk+1

tk

EQ

[
∥∇ log qT−t (Yt)−∇ log qT−tk (Ytk)∥

2
]
dt

≤
N−1∑
k=0

∫ tk+1

tk

Etk,t dt =

N−1∑
k=0

∫ tk+1

tk

∫ t

tk

E
(1)
tk,s

ds dt+

N−1∑
k=0

∫ tk+1

tk

∫ t

tk

E
(2)
tk,s

ds dt

We bound the two sums separately. Recall γk satisfies γk ≤ κmin{1, T − tk+1} for some κ. As a result of
this, assume there exists some index M such that tM = T −1, so that when analyzing each sum, we consider
the first M terms and the last N−M terms separately due to the form of γk. Ultimately, some crude bounds
suffice, and one eventually obtains that the first sum is ≲ κ2dN and the second is ≲ κd+ κ2dN . This then
yields the final bound

N−1∑
k=0

∫ tk+1

tk

EQ

[
∥∇ log qT−t (Yt)−∇ log qT−tk (Ytk)∥

2
]
dt ≤

N−1∑
k=0

∫ tk+1

tk

Etk,t dt ≲ κ2dN + κdT. (25)

This is then the bound on Error 3, and plugging in everything to (17) yields the desired result.
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3.4 Previous Works

The results in [BBDD23] built upon a strong foundation of works that also analyze the convergence rates
of diffusion models, following [CCL+23] and [CLL23]. The key differences between these three works is the
assumptions needed in order to guarantee the results, with the methodology in each work building with
slightly weaker assumptions and slightly looser bounds on convergence rates. Starting with [CCL+23], the
main difference with [BBDD23] is that they make the (stronger) assumption that ∇ log(qt) is L-Lipschitz ∀t
(recall that ∇ log(qt) is the score that was instrumental in the proof above. Even in [CCL+23] they note that
this L-Lipschitz condition could be relaxed, as was done in the later works. Note that while this work also
presents bounds in terms of Total Variation distance rather than KL divergence, these two quantities can
be interpreted side-by-side with a variety of inequalities such as Pinsker’s inequality as is done in [CCL+23].
The proof structure in [CCL+23] is very similar to what we described above, with the TV (pT , q0) being
decomposed into three components, 1. convergence of forward process 2. discretization error, 3. score
estimation error. The first result in [CCL+23] is that TV (pdata, pT )

2 ≤ Õ(ϵ2) with Õ(dL2/ϵ2) samples. Note
that, unlike above, this result is with respect to the true distribution we are trying to estimate pdata = q0
rather than qδ, and uses the full T step reverse process pT rather than pTn

= pT−δ. The second main result
from this paper is that they do an initial result of relaxing the L-Lipschitz condition, and instead assume
only that the distribution q0 is only supported on the ball of radius R ≥ 1. In this result, they also use early
stopping to bound TV (qδ, pTn

)2 with Õ(dR4/(ϵ2δ4) samples.
[CLL23] builds on the work in [CCL+23] by relaxing the assumption of L-Lipschitz to only hold for

∇ log p0 rather than holding for ∇ log pt for all t. In this work they also switch to bounding KL divergence,

and bound KL(q0, pT ) with Õ

(
d2 log2(L)

ϵ

2
)

samples. The other main new result from this paper is that they

use early stopping (as described above) to bound KL(qδ ∥ pT−δ) with Õ
(

d2 log2(1/δ)
ϵ20

)
samples without any

Lipschitz assumptions. Again, recall that this result must be relative to the early stopping time as with the
weak assumptions, it is impossible to obtain KL or TV closeness to the true pdata. Note that this result
is exactly a factor of d worse than the results described above by [BBDD23]. This paper can obtain the
correct upper bound (in terms of d) when the score is assumed Lipschitz; when they drop this assumption,
they instead attempt to prove a high probability bound on the norm of the Hessian in order to control the
discretization error. It is this bound that incurs the factor of d2 that ultimately causes the entire bound to
be of order d2. In the main paper we survey, the entire approach of bounding the discretization error is quite
different, and the results from stochastic localization enable them to prove this tighter bound.

4 Diffusion, Stochastic Localization, and the Key Lemma

In this section, we provide a proof of the key Lemma 3.4, which, as stated above, leads to the improvement
in [BBDD23]. This lemma is based on a fundamental connection between diffusion models and stochastic
localization [Mon23], a self-contained treatment of which we provide here before proceeding to the proof.

Before we begin, we give a brief overview of some basic notions in stochastic calculus which were used a
handful times in the sections above, and will be used move heavily below.

4.1 Itô Calculus

Theorem 4.1 ((1-dimensional) Itô’s Lemma, from Oskendal). Let {Xt} be an Itô process given by dXt =
vtdBt + utdt. Let g(t, x) ∈ C2([0,∞)× R). Then Yt := g(t,Xt) is again an Itô process given by

dYt =
∂g

∂t
(t,Xt) dt+

∂g

∂x
(t,Xt) dXt +

1

2

∂2g

∂x2
(t,Xt) d⟨X⟩t (26)

The intuition behind this is that the quadratic variation of Brownian motion does not vanish, while it does
for deterministic functions. The result is that when one Taylor expands, they must consider up to second
order terms in x as a result. This is why there is an additional third term. We will use the multidimensional
version of this, but it does not change much.
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Theorem 4.2 (The Itô Isometry). For any 1-dimensional stochastic process Xt which is adapted to the
natural filtration of the 1-dimensional Brownian motion Bt, one has

E

(∫ T

0

Xt dBt

)2
 = E

[∫ T

0

X2
t dt

]
(27)

Similar results again hold for higher dimensions.

4.2 Stochastic Localization

The main idea of stochastic localization is to construct a sequence of measures µt that “localizes” around
some point mass. In other words, we would like that µt → δx∗ as t → ∞, where x∗ is distributed according
to µ. More concretely, consider the following canonical construction. Our ultimate goal is to sample from
µ. Suppose at first that x∗ is such a sample from µ. Now, consider the process

Ut = tx∗ +Bt, (28)

where Wt is a Brownian motion. Intuitively, taking µt to be the conditional distribution of x∗ given Ut, then
µt converges to δx∗ , since this process becomes more and more informative about x∗ as t → ∞ (in the sense
that the signal-to-noise ratio grows arbitrarily large). One can more formally compute (from [Mon23])

µt(dx) =
1

Z ′µ(dx) exp

(
− 1

2t
||Ut − tx||22

)
=

1

Z
µ(dx) exp

(
⟨Ut, x⟩ −

t

2
||x||2

)
(29)

Hence, the construction of the process (µt)t≥0 allows us to sample from µ. Even though we have this
convenient localization result, this appears not to be useful at first glance. Firstly, this definition of µt

depends on Ut, which in itself depends on x∗. Hence, constructing this stochastic process appears to rely on
us being able to sample in the first place. However, this problem is resolved through the following proposition
in Section 7.4, [LS01].

Proposition 4.1. Suppose that µ has finite second moment. Then, (Ut)t≥0 is the unique solution of the
following SDE with initial condition U0 = 0:

dUt = at(Ut)dt+ dBt, (30)

where
at(u) := E[x|tx+

√
tG = u], (x,G) ∼ µ⊗N(0, In). (31)

Additionally define At(Ut) = Cov(µt).

4.3 Relationship Between Diffusion and Stochastic Localization

The key observation that relates diffusion and stochastic localization is that the processes in (2) and (28)
are equivalent up to a change of time. In particular, we have the following theorem.

Theorem 4.3. If (Xt)t≥0 is defined by (2) and (Us)s≥0 is defined by (28), then, for t(s) = 1
2 log(1 + s−1),

(Us)s≥0 and (set(s)Xt(s))s≥0 have the same law. Similarly, we will have that as(Us) and mt(Xt) have the
same law when t = t(s).

Note that this will be reversing the flow of time, and one can already see the resemblance in the SDEs
defining the SL process in (30) and the true reverse process in (4), since we know the form of at will be
something similar, as a result of Tweedie’s formula.

Proof. Suppose that (Xt)t≥0 follows the OU SDE in (2), that is, dXt = −Xtdt+
√
2dBt. Then, integration

by parts for continuous semimartingales yields that

d(etXt) = etXtdt+ et
(
−Xtdt+

√
2dBt

)
=

√
2etdBt. (32)
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Hence, the DDS theorem states that there exists some standard Brownian motion (Ws)s≥0 so that

We2s−1 =

∫ s

0

√
2erdBr, (33)

since we have the equality
〈∫ s

0

√
2erdBr

〉
=
∫ s

0
2e2rdr = e2s − 1. Hence, by (32), we have that eτ(s)Xτ(s) =

X0 + Ws, where τ(s) = 1
2 log(1 + s). Substituting s := 1/s and multiplying both sides by s yields

seτ(1/s)Xτ(1/s) = sX0 + sW1/s. However, we note that this exactly satisfies Equation (28), as sW1/s has the
law of a standard Brownian motion. This shows one of the desired results. To argue that as(Us) and mt(Xt)
have the same laws when t = τ(s), it suffices to note that conditioning on Us is equivalent to conditioning
on Xt(s).

Hence, the main technique in this paper is that because there is this relationship/equivalence between
diffusion and stochastic localization, the tools developed in the stochastic localization literature can be used
to obtain tighter bounds.

4.4 Flow Reversal

This is maybe not a rigorous proof, but does what was suggested in class in that it checks that the Fokker-
Plank equations for the forward and reverse processes are exactly negated. Recall from class the Fokker-Plank
equation:

Theorem 4.4. For any smoothly varying family of smooth vector fields vt : Rd → Rd, the iterates xt of the
SDE

dXt = vt(Xt) dt+
√
2 dBt (34)

are distributed according to qt satisfying the PDE

∂qt
∂t

= −div(qt(x)vt(x)) + ∆qt. (35)

For the forward process, a straightforward calculations yields

∂qt
∂t

= dqt +∇qt · x+∆qt.

For the reverse process, we should have the marginal distribution (denote them q′) at time T − t is equal
to the marginal distribution distribution of the forward process at time t. We check this:

∂q′T−t

∂t
= −div(qt · (Y + 2∇ log qt(Y ))) + ∆qt

Chain ruling and doing basic calculations yields

= −dqt −∇qt · y −∆qt

which is exactly what is expected.

4.5 Proof of the Key Lemma

The relevant results in the stochastic localization literature as stated and proven as follows:

Proposition 4.2 ([BBDD23, Proposition 1]). If we define Ls(x) =
dµs

dµ (x), then dLs(x) = Ls(x)(x−as)·dBs

for all s ≥ 0.

Proof. (29) yields

Ls(x) =
1

Zs
exp

(
U⊤
t x− s

2
∥x∥2

)
µ(dx) Zs =

∫
exp

(
Us · x− s

2
∥x∥2

)
µ(dx) (36)
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and thus

d logLs(x) = x · dUs −
1

2
∥x∥2ds− d logZs. (37)

Define hs(x) = Us ·x− s
2∥x∥

2 and note dhs(x) = x ·dUs− 1
2∥x∥

2ds, so hs(x) is also an Itô process. Then
Zs =

∫
exphs(x) µ(dx) and by Itô’s Lemma (the function here is

∫
ex dx),

dZs =

∫
(dhs(x) +

1

2
d⟨h(x)⟩s)ehs(x) µ(dx)

=

∫
(x · dUs −

1

2
∥x∥2 ds+

1

2
∥x∥2)ehs(x) µ(dx)

= Zs

(
1

Zs

∫
xehs(x) µ(dx)

)
· dUs

Recall that 1
Zs

ehs(x)µ(dx) is exactly the conditional density of x∗, conditional on observing xs, and hence
this integral is just the conditional mean as:

= Zs(as · dUs).

Hence Zs is also an Itô process, and thus applying the Itô Lemma to logZs yields

d logZs =
dZs

Zs
− 1

2

d⟨Z⟩s
Z2
s

= (as · dUs)−
∥as∥2

2
ds

upon which substituting into (37) yields

d logLs(x) = (x− as) · dUs −
1

2
(∥x∥2−∥as∥2) ds

= (x− as) · (x ds+ dBs)−
1

2
(∥x∥2−∥as∥2) ds

= (x− as) · dBs −
1

2
∥x− as∥2 ds.

To finish, we apply Itô’s lemma one last time, to find dLs(x) = d exp(logLs(x)):

dLs(x) = Ls(x) · d logLs(x) +
1

2
Ls(x) d⟨logL(x)⟩s = Ls(x)(x− as) dBs

as desired.

Proposition 4.3 ([BBDD23, Proposition 2]). For all s ≥ 0, d
ds E[As] = −E[A2

s].

Proof. From above, we obtain

das = d

(∫
Rd

x
dµs

dµ
(x) µ(dx)

)
= d

(∫
Rd

xLs(x) µ(dx)

)
Again by Itô,

=

∫
Rd

xdLs(x) µ(dx)

=

∫
Rd

x⊗ (x− as)Ls(x) · dBs µ(dx).

Because, again, Ls(x)µ(dx) = µs(dx), we have

das = Eµs(x)[x⊗ (x− as)] · dBs = (Eµs
[(x− as)⊗ (x− as)] + Eµs

[as ⊗ (x− as)]︸ ︷︷ ︸
=0

) · dBs = As · dBs
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Thus

at =

∫ t

0

As · dBs

By the Itô Isometry:

E[a⊗2
t ] = E

[(∫ t

0

As · dBs

)]
= E

[∫ t

0

(As)
2 ds

]
d

dt
E[a⊗2

t ] = E[A2
t ]

Finally, recall that E[At] = E[x⊗2]− E[a⊗2
t ], yielding the desired result.

We now need to pass back through the relation between stochastic localization and the OU process to
obtain the relevant result, Lemma 3.4

Recall As ∼ Σt when t = t(s) = 1
2 log(1 + s−1) (so s = 1/(e2t − 1)). Then

d

dt
E[Σt] =

dE[As(t)]

ds(t)

ds(t)

dt
= −E[A2

s] · −
2e2t

(e2t − 1)2

(e2t − 1)2

2e2t
d

dt
E[Σt] = E[Σ2

t ]

One can then check that the expression on the right is indeed equal to σ3
t /σ̇t.
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