
Unsupervised Learning via Algebraic Circuit Reconstruction
CS224 Project (Algorithms for Data Science, Fall 2023)

Prashanth Amireddy

December 26, 2023

Abstract

We give an exposition of a recent series of works solving unsupervised learning problems
such as learning Gaussian mixtures and subspace clustering by framing them as algebraic circuit
reconstruction problems.

1 Introduction

Tensor decomposition is a fundamental problem with several applications in machine learning. In
the symmetric version of this problem, we are given a polynomial f(x) =

∑s
i=1 ℓi(x)

3 where ℓi(x)
are linear real polynomials, the goal is to find these linear polynomials. This can be solved in
a “non-degenerate” setting, i.e., when ℓi’s are linearly independent, in polynomial time by using
Jennrich’s algorithm [H+70, LRA93]. A natural generalization of this problem is that of learning
sum of powers of quadratic forms. Here, for a given polynomial f(x) =

∑s
i=1Qi(x)

d/2 for some
homogeneous quadratic polynomials Qi(x), we need to compute the Qi’s. Apart from being a natural
generalization of symmetric tensor decomposition into a more complex algebraic circuit model, this
is also closely related to learning Gaussian mixtures from their moments. Learning mixtures of any
Gaussian mixtures in the smoothed setting is a f Tensor decomposition is a fundamental problem
with several applications in machine learning. In the symmetric version of this problem, we are
given a polynomial f(x) =

∑s
i=1 ℓi(x)

3 where ℓi(x) are linear real polynomials, the goal is to
find these linear polynomials. This can be solved in a “non-degenerate” setting, i.e., when ℓi’s are
linearly independent, in polynomial time by using Jennrich’s algorithm [H+70,LRA93]. A natural
generalization of this problem is that of learning sum of powers of quadratic forms. Here, for
a given polynomial f(x) =

∑s
i=1Qi(x)

d/2 for some homogeneous quadratic polynomials Qi(x),
we need to compute the Qi’s. Apart from being a natural generalization of symmetric tensor
decomposition into a more complex algebraic circuit model, this is also closely related to learning
Gaussian mixtures from their moments. Learning any “smoothed” mixture of polynomially bounded
number of Gaussians in polynomial time is an important problem in learning theory that is still
wide-open! We will focus on one particular approach that makes progress towards this goal under
some additional assumptions; for example, that the means of the Gaussians are zero.

A recent series of works exploits the above connection to algebraic circuit complexity to derive
new learning algorithms for Gaussian mixtures. In this report, we will primarily focus on the work of
Garg, Kayal and Saha [GKS20] that gives a new polynomial time algorithm for learning zero-mean
Gaussian mixtures given exact access to its moments.

1

Theorem 1.1 ([GKS20] Lemma 3.1, modified). Suppose n is the dimension and s = poly(n).
Given black-box access to the exact O(1)-order moments of a non-degenerate mixture of zero-mean
Gaussians D =

∑s
i=1wi · N (0,Σi), its parameters (wi,Σi)i∈[s] can be recovered by a polynomial (in

the bit complexity of the parameters) time randomized algorithm.

The main conceptual contribution of [GKS20], and other related works [KS19, CGK+23], is
to give a meta-algorithm that converts a lower bound proof for an algebraic model into a learning
algorithm for the same class. In Section 3, we will give an overview of this meta-algorithm for
learning sum of powers of quadratics, by making some simplifying assumptions such as the weights of
all the components being identical, that s = poly(n) and that the degrees of the “inner polyonmials”
is two (this suffices for learning Gaussian mixtures), deferring the proofs of some of the technical
parts to the original paper.

Related works. Ge, Huang and Kakade [GHK15] give a polynomial time algorithm in the
smoothed setting when the number of components s ⩽ O(

√
n). The authors proceed by handling

the zero-mean Gaussians first and then extend it to the general mean case. The zero-mean case
involves estimating the (⩽ 6)-th order moments of the distribution and exploiting their algebraic
structure to learn the parameters of the mixture.

The work of Chandra et al. [CGK+23] closely builds upon [GKS20] and covers even more un-
supervised learning tasks including subspace clustering and potentially learning polynomial trans-
formations and topic modelling. For all these applications, the idea is the same: Suppose we want
to fit a model/distribution to a given set of points, A ⊆ Rn. This could be fitting a Gaussian mix-
tures model or a subspace clustering problem1. Then, we first encode the data A as a (low-degree)
multivariate polynomial P (x) ∈ Rd[x]; this encoding is natural in most cases. As it turns out, for
most of these unsupervised learning tasks, P (x) admits a “simple/small” algebraic circuit if and
only if A has the desired structure, be it that its moments agree with that of Gaussian mixtures
or that it is a union of low-dimensional subspaces for the subspace clustering problem. Then, one
can use the algebraic circuit reconstruction principles to obtain the individual components of the
circuit, which in most cases immediately yield the parameters of the structure (e.g., the covariance
matrices or the low-dimensional components) we are trying to learn about A.

Another crucial contribution of [CGK+23] is noise-robustness. While the previous works only
work when given exact access to the moments (for the Gaussian mixtures problem), practically we
can only empirically estimate the moments, which adds a noise term to the function we are trying to
learn. The main step that needs to be made robust to noise is Vector Space Decomposition (discussed
in Section 3). Under some assumptions about the condition numbers of certain random matrices
being small, the authors give an algorithm for robust subspace clustering in the smoothed setting,
i.e., the projection matrix for each component subspace is perturbed by a Gaussian noise while
maintaining the dimension. Similarly, for learning Gaussian mixtures with estimated/approximate
moments, the authors prove the correctness of their algorithm under certain conjectured singular
value bounds, again in the smoothed setting (i.e., each covariance matrix is obtained by perturbing
a random instance with a Gaussian noise).

These results are closely related to the work of Bafna et al. [BHKX22]. Their algorithm
proceeds in a similar way of using partial derivatives to obtain more structured subspaces. However,

1In subspace clustering, the goal is to partition the (noisy) points of A into the constituent low dimensional
subspaces.

2

it has the advantage of learning Gaussian mixtures from much lower-order moments than [GKS20,
CGK+23], at least in the random setting i.e., when the coefficients of the polynomials are picked
independently from a normal distribution. The resulting algorithm is robust to noise in the moments,
which is proved by bounding the singular values of certain random matrices by using the graph
matrix decomposition method.

2 Preliminaries

Basic notation. We define [n] ≜ {1, 2, . . . , n}. For a finite set A and integer d, we use
(
A
d

)
to refer

to the set of subsets of A of size d. An algebraic circuit is an algebraic expression with addition and
multiplication operations; in this article, we only need to work with algebraic circuits of the form
R1(x)

e +R2(x)
e + · · ·+Rs(x)

e where Ri(x)’s are homogeneous polynomials of the same degree.

Probability. For µ ∈ Rn and a psd matrix Σ ∈ Rn×n, N (µ,Σ) stands for the Gaussian dis-
tribution with mean µ and covariance Σ. The d-th order moments of a distribution D over Rn

are Ex∼D[x
α] for all α ∈ Zn

⩾0 such that |α|1 = d, where xα is a monomial in x with exponents
represented by a vector α ∈ Zn

⩾0.

Algebra. For x ≜ (x1, x2, . . . , xn), Rd[x] denotes the set of all real homogeneous polynomials over
x of degree d – this is a vector space over R of dimension

(
n+d−1

d

)
. For P = P (x) ∈ Rd[x] and

0 ⩽ k ⩽ d, ∂k(P) ⊆ Rd−k[x] denotes the set of all k-th order partial derivatives of P . For any set of
polynomials P ⊆ Rd[x], ⟨P⟩ denotes its span and dim(·) stands for dimension. The Schwartz-Zippel
lemma states that for any non-zero polynomial P (x) of degree d and any non-empty S ⊆ R, it holds
that

Pr
a∼Sn

[p(a) = 0] ⩽ d/|S|.

Linear algebra. We use the notation A ⪰ 0 to denote that a real symmetric matrix A is positive
semidefinite (psd). The operator norm of a real matrix A is denoted by ∥A∥. For two subspaces
U and V of a vector space W , we write U + V = U ⊕ V if U and V are linearly independent;
equivalently dim(U + V) = dim(U) + dim(V).

3 Learning Gaussian mixtures

Here, we are given exact access to low-order moments of a mixture of zero-mean Gaussians and the
goal is to recover the parameters of the distribution. More formally, suppose

D =
s∑

i=1

wi · N (0,Σi)

is the (unknown) distribution, where wi ⩾ 0,
∑

iwi = 1 and Σi ⪰ 0.
We will prove the following theorem.

Theorem 3.1 (Learning Gaussian mixtures). Given exact access to all the O(log s/ log n)-order
moments of a non-degenerate Gaussian mixture D =

∑s
i=1wi · N (0,Σi), its parameters wi and Σi

can be estimated in poly(n, s) time.

3

In particular, when s = poly(n), we get an algorithm with poly(n) time complexity assuming
exact access to O(1)-order moments. (This is the setting we will mostly restrict to in this paper.)

A few remarks about the above theorem statement:

Remark 3.2.

1. The non-degeneracy conditions will be discussed in more detail later, but for now, we only
remark that these conditions will be satisfied for any “generic” choices of the parameters. For
example, it could be the condition that some matrix formed by the parameters is non-singular.

2. The above algorithm is randomized, and succeeds with probability 1− o(1).

3. We assume that s is already known (if not, we can try each value of s).

We now describe how the above task can be reduced to that of learning an algebraic circuit rep-
resentation given black-box access to a polynomial. Let d = O(log s/ log n) = O(1) be a sufficiently
large even integer to be fixed later. The moment generating function of D is2

E[e⟨x,D⟩] =

s∑
i=1

wie
x⊤Σix/2.

Letting Qi(x) ≜ x⊤Σix/2 and comparing the degree-d homogeneous parts in the Taylor expansion
of both sides, we have

E[⟨x,D⟩d]
d!

=
s∑

i=1

wiQi(x)
d/2

(d/2)!
.

Since, we are assuming black-box access to the moments of D, we have black-box access to the
polynomial on the RHS of the above equation, i.e.,

f(x) ≜
s∑

i=1

wiQi(x)
d/2.

Thus, we have reduced the problem to that of learning Qi’s (from which we can read off the
covariance matrices Σi’s) in the above representation, given black-box access to the function f(x).
However, note that the above form may not be unique as we can scale up wi’s and scale down Qi’s
accordingly. Nevertheless, for simplicity we can assume that wi = 1/s for all i ∈ [s]. To handle the
general case of unknown weights, we can take two different values for d and “pair-up” the learned
Qi’s to figure out the weights. Hence, it suffices to show the following:

Theorem 3.3 (Learning sum of powers of polynomials). Given black-box access to f(x) =
∑s

i=1Qi(x)
d/2

where Qi’s are homogeneous degree-2 polynomials, there is a poly(n) algorithm that outputs Qi’s up
to a permutation, assuming that Qi’s satisfy some non-degeneracy condition (to be specified later
within the proof).

We describe the algorithm in Algorithm 1 and breakdown its analysis into the following steps.
For simplicity, we will assume that we have explicit access to the polynomial f (as a list of coeffi-
cients). All the operations we are going to perform with f can be made black-box.

2This is where we are using the assumption that the Gaussians have zero mean; otherwise, the resulting algebraic
circuit reconstruction problem will involve non-homogeneous polynomials making it harder to analyze.

4

Algorithm 1 Learning sum of powers of quadratics
Input: Access to a polynomial f(x) =

∑s
i=1Qi(x)

d/2

Output: The polynomials Qi(x) for i ∈ [s], up to a permutation
1. Compute a basis for U = ⟨L1 ◦ f⟩ = U1 ⊕ U2 ⊕ · · · ⊕ Us (see Step 1 below)
2. Compute a basis for V = V1 ⊕ V2 ⊕ · · · ⊕ Vs, where Vi = ⟨Ge

i ⟩ (see Step 2 below)
3. Compute a basis for W = W1 ⊕W2 ⊕ · · · ⊕Ws, where Wi = L2 ◦ Vi and W = L2 ◦ V
4. Decompose V and W into independent subspaces Vi’s and Wi’s respectively, under the action

of L2, with maximal possible terms s.
5. Recover Qe

i (up to a constant factor) from Vi = ⟨πL(Qi)
e⟩, and then Qi’s for all i ∈ [s].

3.1 Step 1: The first set of linear maps L1

In order to prove the above result, the idea is to use the structure of each term Ti(x) ≜ Qi(x)
t/2 on

the RHS. Suppose there exists k ∈ [d/2] and a set of linear maps L = {L1, L2, . . . , Lt} from Rd[x]
to Rd−k[x]

3 such that

⟨L1 ◦ f⟩ = ⟨L1 ◦ T1⟩ ⊕ ⟨L1 ◦ T2⟩ ⊕ · · · ⊕ ⟨L1 ◦ Ts⟩ . (1)

Informally, this means that the linear forms are such that each term Ti “simplifies” into a low
dimensional subspace whereas f doesn’t. In a sense, dim ⟨L1 ◦ f⟩ is a measure of the “complexity”
of f . Using such linear maps L1, we can prove a lower bound

s ⩾
dim ⟨L1 ◦ f⟩

maxi dim ⟨L1 ◦ Ti⟩
.

Indeed, this is how most known algebraic circuit lower bounds are proven. Thus a starting
point for what linear maps to choose is to simply use the same linear maps that the lower bound
proofs use. For the model we are considering here, i.e., sum of powers of quadratics, it turns out
that the following measure works:

L1 ≜ {πL(∂k)},

where πL : R[x] → R[z] corresponds to the substitution xi = ℓi(z) for a linear map L =
(ℓ1(z), ℓ2(z), . . . , ℓn(z)), with z = (z1, z2, . . . , zn0) being new formal variables. Here n0 is strictly
less than n that we will fix later (see Subsection 3.6 on non-degeneracy conditions). This measure
(i.e., the one corresponding to L1) is called the affine projections of partials (APP) of f . That is,

APP(f) ≜ dim
〈
{πL(∂k(f))}

〉
.

The choice of k, n0 and L are hidden from the above definition.
We now elaborate on how the choice of these linear maps i.e., the partial differentiation op-

erators, are motivated by Jennrich’s algorithm. Below, we briefly describe a variant of Jennrich’s
algorithm for symmetric tensor decomposition. We shall discuss it in terms of polynomials rather
than tensors to make the connection clear.

3The final maps we shall choose will have a co-domain of Rd−k[z] but this is just a matter of renaming the variables

5

Here, we have a polynomial f(x) =
∑s

i=1 ℓi(x)
d and the goal is to learn the linear polynomials

ℓi(x) for i ∈ [s], assuming that ℓi’s are linearly independent4. Furthermore, we also assume that
for any j ⩽ ⌊d/2⌋, the polynomials ℓi(x)

j are linearly independent (these may be treated as ad-
ditional non-degeneracy conditions); therefore we have s ⩽ n. Then we can show that

〈
∂1(f)

〉
=〈

ℓ1(x)
d−1

〉
⊕
〈
ℓ2(x)

d−1
〉
⊕· · ·⊕

〈
ℓs(x)

d−1
〉

and
〈
∂2(f)

〉
=

〈
ℓ1(x)

d−2
〉
⊕
〈
ℓ2(x)

d−2
〉
⊕· · ·⊕

〈
ℓs(x)

d−2
〉
.

Now, to find the ℓi’s, we find the common eigenvectors of the linear maps (or equivalently, find a
common diagonalization of the matrices represented by these linear maps) from

〈
∂1(f)

〉
and

〈
∂2(f)

〉
given by ∂1. This gives us the polynomials ℓi(x)

d−1 from which we can recover ℓi(x).
The following note explains the need for projections after taking the derivatives when defining

the APP measure.

Remark 3.4. It is necessary to reduce the number of variables for the above approach to work
since if some term Ti(x) = (x21 + x22 + · · · + x2n)

d/2, the measure dim
〈
∂k(Ti)

〉
can be proven to be

“maximal” i.e.,
(
n+k−1

k

)
, which isn’t conducive for (1) to hold.

We have the following properties for APP.

Proposition 3.5. For degree-d homogeneous polynomials f and g,

• APP(f + g) ⩽ APP(f) + APP(g)

• APP(f) ⩽ min{
(
n+k−1

k

)
,
(
n0+d−k−1

d−k

)
}, and this is tight (indeed a “randomly” chosen f has

APP close to the RHS)

Proof sketch. Note that

{πL(∂k(f + g))} ⊆
〈
{πL(∂k(f))}

〉
+
〈
{πL(∂k(g))}

〉
,

since ∂k is a linear operator over the space Rd[x]. Taking dim(·) on both sides and using dim(U +
V) ⩽ dim(U) + dim(V) proves the first item.

The second item follows since the number of linear operators i.e., the size of {πL(∂k(f))} is(
n+k−1

k

)
and the degree of the polynomials after taking k derivatives is d− k. Thus

〈
{πL(∂k(f))}

〉
is a subspace of Rd−k[z] whose dimension is

(
n0+d−k−1

d−k

)
.

Let us denote Ui ≜ L1 ◦ Ti for i ∈ [s] and U ≜ ⟨L1 ◦ f⟩. Then, we can compute (a basis for
U) using (black-box) access to f . However, the main challenge is to also recover the subspaces Ui’s
(and then the terms Ti subsequently).

By using the product and chain rule of derivatives, it is not hard to show that Ui ⊆
〈
zk · πL(Qi)

d/2−k
〉
.

Further, for the direct sum (1) to hold, we have the following stronger condition.

Proposition 3.6. With probability5 1−o(1) over the choice of the linear map L (i.e., the coefficients
of the linear functions are picked uniformly at random from an arbitrary, but sufficiently large set
of reals), we have that

• U = U1 ⊕ U2 ⊕ · · · ⊕ Us, and
4We may assume that d = 3, but some of the non-degeneracy conditions that follow might only work for large

enough d; this needs to be verified.
5Even though we state this in terms of a random choice of L, it suffices if the coefficients used in L satisfy an

appropriate non-degeneracy condition.

6

• Ui =
〈
zk · πL(Qi)

d/2−k
〉

(With probability 1, LHS is a subset of RHS)

Hence, dim(U) = s ·
(
n0+k−1

k

)
.

Proof sketch. Note that ∂x1(Q
d/2
i) ∈

〈
Q

d/2−1
i · x

〉
by applying chain rule. Applying more derivatives

and the product rule, we can see that ∂m(Q
d/2
i) ∈

〈
xk ·Qd/2−k

i

〉
. This can be formally proved by an

induction on k. Then, applying the substitution of z variables gives that Ui ⊆
〈
zk · πL(Qi)

d/2−k
〉
.

To show that they are actually equal under a non-degenerate case, we can argue that each level
of the induction (on k) does not unexpectedly decrease the dimension. It only remains to prove
that Ui’s are independent. This is a bit technical, however the intuition is that as long as U has
a sufficiently large dimension that allows for Ui’s to be independent, this is possible (under some
non-degeneracy condition). We will prove this in Subsection 3.6.

3.2 Step 2: Multi-gcd

Let e = d/2− k, Gi ≜ πL(Qi), Vi ≜ ⟨Ge
i ⟩ and V ≜ V1 + V2 + · · ·+ Vs. We can show

Proposition 3.7. With probability 1−o(1) over the choice of L, we have that V = V1⊕V2⊕· · ·⊕Vs.

Here, we skip the details justifying how to compute (a basis of) of V , but only mention that
this is the same as computing a “multi-gcd” of elements in (the known vector space) U . Although
this multi-gcd step may be avoided by working with Ui’s and U instead of Vi’s and V respectively,
taking multi-gcd makes the subsequent steps easier.

3.3 Step 3: The second set of linear maps L2

Recall that
V = V1 ⊕ V2 ⊕ · · · ⊕ Vs.

Let g(z) ∈ V be a randomly6 chosen element of V . Now, suppose there exists a set of linear maps L2

from V (which is a subspace of R[z]2e) to some subspace W of R[w]2e−k where w = (w1, w2, . . . , wm0)
and m0 ⩽ n0, such that the following property holds:

W = W1 ⊕W2 ⊕ · · · ⊕Ws,

where Wi ≜ L2 ◦ Vi and W ≜ W1 +W2 + · · · +Ws. Then, the idea is to use the above structure,
i.e., the fact that the linear maps are all some block diagonal matrices under appropriate bases for
V and W , and recover Vi’s and Wi’s by doing a simultaneous block diagonalization. However, note
that one can’t hope to perform this with any L2; for example taking just the identity map can
never reveal anything about Vi’s. We need the decomposition to be unique (in its most reduced
form, i.e., it has to be further indecomposable). Taking the following linear maps works where
P = (p1(w), p2(w), . . . , pn0(w)) is a random linear substitution:

L2 ≜ {πP (∂k)}.

This follows by another application of Proposition 3.6.
6Again, we only need some non-degeneracy condition to be satisfied by g, but it turns out that taking random

instances (i.e., the coefficient of each basis element is picked from a large enough set uniformly at random) are
non-degenerate w.h.p.; this follows by the Schwartz-Zippel lemma.

7

3.4 Step 4: Vector space decomposition

We now have access to a basis of the vector spaces V and W and our goal is to decompose them into
further-indecomposable (i.e., maximal s possible) subspaces such that we have, V = V1⊕V2⊕· · ·⊕Vs

and W = W1⊕W2⊕· · ·⊕Ws, where recall that Wi ≜ L2◦Vi. Additionally, we have that dim(Vi) = 1.
In order to show uniqueness and efficient computation of the above decomposition, we analyze the
adjoint algebra associated with L2.

Suppose we have computed a basis {g1, g2, . . . , gs} of V . We have q ≜ dim(Wi) =
(
m0+k−1

k

)
,

as Wi =
〈
wk · πP (Gi)

e−k
〉
. Hence dim(W) = sq. We shall represent each linear map L ∈ L2 as a

sq × s matrix using the basis {g1, g2, . . . , gs} for V and an arbitrary basis for W . We then define
the adjoint algebra corresponding to L2 as

adj(L2) ≜ {(D,E) ∈ Rs×s × Rsq×sq : LD = EL, for all L ∈ L2}.

Using the specific maps L2 we work with, i.e., the affine projections of partials, we can show that
the adjoint algebra is trivial in the following sense.

Proposition 3.8. Let A ∈ Rs×s be the change of basis (of V) matrix from {Ge
1, G

e
2, . . . , G

e
s} to

{g1, g2, . . . , gs}. Then we have
A−1adj(L2)1A = D,

where adj(L2)1 ≜ {D : (D,E) ∈ adj(L2)} and D ≜ {diag(a1, a2, . . . , as) : a1, a2, . . . , as ∈ R}.

Proof sketch. At least one direction of the above proposition is easy to prove: consider an arbitrary
B ≜ diag(a1, a2, . . . , an) ∈ adj(L2) ∈ D. To show that ABA−1 ∈ adj(L2)1, we note that in the basis
{Ge

1, G
e
2, . . . , G

e
s}, applying the linear maps L2 results in a block diagonal sq× s matrix where each

“block” is a q × 1 matrix. Hence, any diagonal matrix B results in an element (B,B′) in adj(L2),
where B′ is an appropriate block diagonal matrix obtained by “repeating” B q many times.

To show the other direction, we will use the following fact (without proof): for any (j, i) ∈ [sq]×
[s] there always exists a linear map L ∈ ⟨L2⟩ such that, when it is represented in the {Ge

1, G
e
2, . . . , G

e
s}

basis, there is a 1 at the (j, i)-th entry and 0 everywhere else.
Then using LD = EL for the above L, we conclude that A−1DA has to be a diagonal matrix.

To see this, in the basis {Ge
1, G

e
2, . . . , G

e
s}, note that LD is just the i-th column of D placed as the

j-th row and 0 everywhere else, whereas EL is the j-th row of E placed as the i-th column and
0 everywhere else. Hence, LD = EL implies that D has to be diagonal and E has to be block
diagonal (q × q blocks).

By Proposition 3.8, we can compute the matrix A by finding the eigenvectors of a random
element from adj(L2)1. This follows because adj(L2)1A = AD implies that the columns of A are
eigenvectors of the elements of adj(L2)1. Now, we first compute a basis for adj(L2)1 (which is a
subspace of s× s real matrices). Then, for a random element, the eigenvalues are all distinct, hence
we can recover the eigenvectors, i.e., the basis change matrix A. Once we have A, we have computed
the polynomials Ge

i for all i ∈ [s].

3.5 Step 5: Recovering the quadratics

Now, we give a brief idea on how to find Qe
i (up to a constant factor) from Ge

i = πL(Qi)
e. At

a high level, this is done by repeating the above steps with poly(d) many independent choices of
the substitution L and “gluing together” the corresponding Gi’s; we skip further details here. Once

8

we have Qe
i , the quadratic form Qi can be found by using a polynomial factorization algorithm.

Finally this gives us Qi(x) up to a constant factor, for all i ∈ [s]. Then these factors can be found
by solving a linear system.

3.6 Non-degeneracy conditions

Most of the non-degeneracy conditions, which are sometimes hidden in a “high probability” state-
ments boil down to a bunch of vectors in a vector space being linearly independent. Let us look
at the first non-degeneracy condition we needed, i.e., in Proposition 3.6: Here, the dimension of
U = ⟨L1 ◦ f⟩ is at most min{

(
n+k−1

k

)
,
(
n0+d−k−1

d−k

)
} (by Proposition 3.5) whereas for the direct sum

to hold, we must have that dim(U) = s ·
(
n0+k−1

k

)
. Therefore, it suffices if we take k to be very

small and n0 = nϵ for some constant ϵ. Then,

dim(U) = s ·
(
n0 + k − 1

k

)
≈ poly(n) · nk

0

⩽ nϵk+O(1)

⩽

(
n+ k − 1

k

)
⩽

(
n0 + d− k − 1

d− k

)
,

as desired. This determines a way of choosing the values for d, k and n0 depending on the value of s.
The value of m0 < n0 can also be set in a similar way, in order to satisfy the direct sum property for
Wi’s, i.e., the image of the linear maps from L2. There are a couple more non-degeneracy conditions
(implicitly or explicitly imposed by the algorithm) that are needed for Step 2 (multi-gcd) to work,
but we ignore those details here.

3.7 Time complexity

The total running time of the above algorithm is polynomial in n (recall that s = poly(n) and
d = O(1)). To see this, we note that Step 1 (and Step 3) only involves computing a set of linear
maps by taking partial derivatives, and some substitutions to reduce the number of variables. Since
d and thus the order of derivatives k are constants, this can be done in polynomial time. These
operations can be efficiently performed in the black-box setting as well. Step 4 is the other crucial
component of the algorithm. Again, it only involves computing a basis of a fixed subspace and
eigenvectors of a given matrix, both of which can be done in polynomial time.

References

[BHKX22] Mitali Bafna, Jun-Ting Hsieh, Pravesh K Kothari, and Jeff Xu. Polynomial-time power-
sum decomposition of polynomials. In 2022 IEEE 63rd Annual Symposium on Founda-
tions of Computer Science (FOCS), pages 956–967. IEEE, 2022. 2

[CGK+23] Pritam Chandra, Ankit Garg, Neeraj Kayal, Kunal Mittal, and Tanmay Sinha. Learning
arithmetic formulas in the presence of noise: A general framework and applications to
unsupervised learning. arXiv preprint arXiv:2311.07284, 2023. 2, 3

9

[GHK15] Rong Ge, Qingqing Huang, and Sham M Kakade. Learning mixtures of gaussians in
high dimensions. In Proceedings of the forty-seventh annual ACM symposium on Theory
of computing, pages 761–770, 2015. 2

[GKS20] Ankit Garg, Neeraj Kayal, and Chandan Saha. Learning sums of powers of low-degree
polynomials in the non-degenerate case. In 2020 IEEE 61st Annual Symposium on
Foundations of Computer Science (FOCS), pages 889–899. IEEE, 2020. 1, 2, 3

[H+70] Richard A Harshman et al. Foundations of the parafac procedure: Models and conditions
for an" explanatory" multimodal factor analysis. 1970. 1

[KS19] Neeraj Kayal and Chandan Saha. Reconstruction of non-degenerate homogeneous depth
three circuits. In Proceedings of the 51st Annual ACM SIGACT Symposium on Theory
of Computing, pages 413–424, 2019. 2

[LRA93] Sue E Leurgans, Robert T Ross, and Rebecca B Abel. A decomposition for three-way
arrays. SIAM Journal on Matrix Analysis and Applications, 14(4):1064–1083, 1993. 1

10

	Introduction
	Preliminaries
	Learning Gaussian mixtures
	Step 1: The first set of linear maps L1
	Step 2: Multi-gcd
	Step 3: The second set of linear maps L2
	Step 4: Vector space decomposition
	Step 5: Recovering the quadratics
	Non-degeneracy conditions
	Time complexity

