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Abstract

The following abstract is from [RT12; JKM18; JKR19] and related works. Computing the
free energy (logarithm of the partition function) of an Ising model is a key problem in the studies
of statistical physics. While the exact problem is computationally intractable, a common scheme
for approximating this key quantity is through the mean-field approximation, which bounds the
free energy from below. In this paper, we will show this approximation scheme’s generally tight
error bound via a fundamental technique called correlation rounding.

Expanding on correlation rounding, we will then use it to approximate MaxCut on an
expander-like graph via convex relaxation. Observing that MaxCut is equivalent to Max-A-
Posteriori estimations for Ising models (and related to the variational estimate of the free en-
ergy), our proof shows how this simple technique can be powerful in analyzing complex graphical
models.

1 Introduction

The Ising model is the de facto standard model in statistical physics used to test the strength of
proposed techniques. It describes a graph of n atoms, each with either positive or negative magnetic
spin. These spins may correlate with one another, and hence we can characterize an Ising model
by a symmetric matrix J , where (J)ij represents the coupling strength between spins i and j. In
addition, this coupling matrix is scaled by the inverse temperature β = 1

kBT , where the Boltzmann
constant kB is fixed and T is the temperature ([JKR19]). The Hamiltonian, or energy of the system,
is then given by

Eβ(x) =
∑
i,j

(βJij)xixj = x⊤Jβx (1.1)

where Jβ = βJ . At equilibrium, the probability distribution of states is given by the Boltzmann
distribution, which is our main object of interest:

Pβ[X = x] ∝ exp(−Eβ(x)) (1.2)

The normalizing constant Zβ =
∑

x exp(−Eβ(x)) is related to the (Gibbs) free energy Fβ of the
system by:

Fβ = β−1 logZβ (1.3)

For our purposes, we will set β = 1, though in each section we will briefly mention its effect on our
approximations and algorithms. A remarkable note from physics is that, as the size of the system
as n → ∞, properties of the system often undergo phase transitions as β varies ([JKR19]).

Computing (or even approximating) the free energy F (or partition function Z) is a central task
in analyzing Ising models as it can easily be turned into efficient sampling algorithms or computing
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marginals/conditionals. However, the exact computation of F for a general J is #-P complete (very
hard) ([SJ89]), and even approximation remains NP-hard ([SS12]). Instead of summing naively,
one can formulate the free energy in terms of an optimization over distributions.

Proposition 1 (Gibbs Variational Principle). For F = logZ, the free energy, one has that:

F = max
µ∈∆(Rn)

∑
i<j

JijEµ [XiXj ] +H(µ)

 . (1.4)

where ∆(Rn) denotes the probability simplex over Rn and H(µ) = Eµ[− logµ] denotes the entropy of
the distribution µ. Moreover, the minimizer of (1.4) is exactly the Boltzmann distribution µ∗ = P .

Proof. The proof relies on the fact that KL(µ∥P ) ≥ 0 for P being our Ising model. In fact, recall
that E(X) = X⊤JX is the Hamiltonian and logZ = − logP (X)− E(X) for all X, hence:

logZ −H(µ) = Eµ[− logP − E(X) + logµ]

= Eµ[− logP + logµ]− Eµ[X
⊤JX]

= KL(µ∥P ) +
∑

JijEµ[XiXj ]

We conclude the proof as KL is always non-negative.

Unfortunately, for large n the space of possible distributions grows exponentially, and finding
such a µ from (1.4) is intractable. Hence one considers reducing the space of possible distributions
to contain only product distributions, where µ can be represented by a n-dimensional vector x.
This technique is called mean-field approximation. Hence we can define the mean-field variational
free energy as

F∗ = max
x∈[−1,1]n

∑
i<j

Jijxixj +
∑
i

H

(
xi + 1

2

) (1.5)

where H(p) = −p log p − (1 − p) log(1 − p) denotes the entropy of the Bern(p) distribution. It is
clear that F∗ ≤ F since the space of distributions being optimized over in (1.5) is a strict subset
of that in (1.4). Theorem 1 will provide bounds as well as an idea of how to well approximate
the marginals of the true solution to the mean-field equations [JKR19]. Furthermore, the critical
points to (1.5) correspond to the fixed points of the map x 7→ tanh(Jx), but this is only known to
converge for high temperature (and hence low β) regimes [JKM18]. In general, it is not clear how
to optimize over (1.5).

1.1 Summary and Organization

This expository paper will review the results from Jain et al. in [JKM18; JKR19] and connect
these results to the large body of MaxCut results by Raghavendra et al. in [RT12]. In particular
we go over the improved bounds [JKM18; JKR19] manages to obtain on the error of the mean-field
estimation. Their primary tool to improve these bounds is called correlation rounding. Our two
major topics are as follows:

1. We introduce correlation rounding and prove the following error bound on the mean-field
approximation:
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Theorem 1 (Estimation error of the optimal mean-field). Consider an Ising model with
coupling matrix J . Let F be the free energy and F∗ ≤ F be the optimal mean-field variational
estimation, then F − F∗ ≲ (n∥J∥F )2/3.

This bound turns out to be generically tight even beyond the space of product distributions
which the mean-field approximation optimizes over when ∥J∥F = Θ(n). We discuss the class
of distributions for which this holds true and the result in Section 2.3.

2. We discuss results obtained by applying correlation rounding to MaxCut. In particular, we
introduce an algorithm using Sherali-Adams convex relaxation to obtain an approximate cut
with O(δ) error in nO(δ−2)-time for an expander-like graph.

The papers we survey contain interesting results we will not have space to cover such as gener-
alizations to k-Markov Random Fields [JKR19], runtime bounds [JKR19], and other classes of
constraint satisfaction-type problems [RT12]. We refer the interested reader to the cited papers.

1.2 Preliminaries and notations

We present fundamental notation and definitions we will use throughout the paper. For shorthand
for any S ⊂ [n], we will notate XS = (Xi1 , . . . , Xi|S|). Furthermore, for any (pseudo)distribution µ
we will use µS to denote the marginal distribution restricted on indices S.

We use TV as the total variation distance between two distributions, and KL as the Kullback-
Leiber divergence. Pinsker’s inequality tells us that

2TV2(µ, ν) ≤ KL(µ∥ν), (1.6)

which we will use throughout (see e.g. [PW23]). The information entropy of a distribution µ is
defined as H(µ) ≜ Ex∼µ[− logµ(x)]. The mutual information between two distributions X,Y with
marginals PX , PY respectively and a joint of PX,Y is defined as I(X,Y ) = KL(PX,Y ∥PX × PY ).
Intuitively, having lower mutual information means our joint distribution is close to the independent
product of its marginals. Finally, the conditional entropy H(X | Y ) is defined as the information
entropy of P(X | Y = y) taken in expectation over y ∼ Y , and hence one can verify that I(X;Y ) =
H(X)−H(X | Y ).

2 Mean-field error bound via correlation rounding

2.1 Correlation rounding

The fundamental tool we will use to prove 1 is correlation rounding. We seek to answer the
following question: Under what criteria can one approximate a general distribution using a product
distribution?

At a high level, for any collection of random variables X1, X2, . . . , Xn, one would intuitively
expect one of the following two cases to hold:

1. The average covariance between pairs is small and hence the collection is close to independent.

2. The average covariance is not small, but some coordinates are “bad” in the sense that they
contribute to a large dependency in the collection and that conditioning on (even an average
configuration of them) removes the pair-wise dependency on the rest of the variables.
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This intuition is indeed true and has been formalized rigorously in many different settings in the
literature, most notably as the “pinning lemma” in the studies of statistical physics ([IV00]).

Proposition 2 (Correlation Rounding, [RT12]). Let X1, . . . , Xn be a collection of {±1}-valued
random variables. Then, for any ℓ ∈ o(n), there exists some S ⊂ [n] with |S| ≤ ℓ such that:

EXS
E{u,v}∈([n]

2 )

[
cov (Xu, Xv | XS)

2
]
≲

1

ℓ
.

Proof. Let µ denote a distribution over {±1}n and consider the potential function Φ(µ) = 1
n

∑
H(µi) ≥

0. For any i ∈ [n], consider the average potential conditioned on Xi. The potential changes by:

Ei[EXiΦ(µ|Xi)]− Φ(µ) = Ei

 1

n

∑
j

H(Xj |Xi)−H(Xi)

 = −Ei,jI(Xi, Xj) < 0.

One can thus consider the following process: in each step, we condition on one more variable Xi

such that the potential drops by at least Ei,jI(Xi, Xj) (note that after conditioning on a variable,
the terms involving that variable vanish, but we keep them for notational simplicity). Now suppose
Ei,jI(Xi, Xj) ≥ 1/ℓ holds throughout the first t steps of conditioning, this means that the potential
at the start has to be at least t/ℓ. However, it is clear that Φ(µ) ≲ 1 since the binary entropy is
bounded above, the process cannot go above t = O(ℓ) rounds before reaching a set S conditioned
on which the sum of mutual information is small!

We need another lemma to conclude, which claims that

| cov(Xi, Xj)| = 2TV(PXi,Xj , PXi × PXj )

for {±1}-valued random variables (see e.g. [BRS11]), combined with Pinsker’s inequality (1.6) to
get:

ℓ−1 ≳ Ei,jI(Xi, Xj) ≳ Ei,j TV(PXi,Xj , PXi × PXj )
2 ≍ Ei,j cov(Xi, Xj)

2

when conditioned on an average XS ∼ µS for some |S| ≲ ℓ.

Remark 2.1. Later in this note, we will see that even conditioning on an average S successfully
removes the dependency (Lemma 5) using essentially the same proof.

Remark 2.2. Allen and O’Donell conjectured in [AO15] that the bound on covariance can be tight-
ened to 1

ℓ2
. However, [JKR19; JKM18] refutes this conjecture using theory from Sherrington-

Kirkpatrick Spin Glass models to show that the bound is indeed tight for this class of Ising models.

2.2 Proof of Theorem 1

Previous results by Jain, Koehler, and Mossel in [JKM18] show that the error bound for the mean-

field approximation is O(n2/3∥J∥2/3F log1/3(n∥J∥F )). The results of [JKR19] take out this log factor
and achieved a generally tight error bound (Section 2.3). Theorem 1 can be generalized to k Markov
Random Fields (and hence relates to problems such as Max-k-CSP) (Section 5, [JKR19]).

Proof of Theorem 1. We are looking for a product distribution that is statistically close to the
true distribution µ with error ϵ > 0. Take ℓ = 1

ϵ2 log 2
. Recall from Prop. 2 there exists some

subset S such that |S| ≤ ℓ, where the average covariance between pairs is small upon conditioning
by S. We take νxS to be the product distribution that agrees with the true µ on first moments
EνxS

[Xi] = Eµ[Xi|XS = xS ]. It suffices to show that in expectation over the randomness of xS , our
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mean field approximation has O(n2/3∥J∥2/3F ) error, as by an averaging argument this implies there
exists such a xS that satisfies the error, and hence there exists a product distribution νxS as well.

Recall from the definition of entropy we have that Hµ(X) = Hµ(X|XS) +Hµ(XS). From our
definition of variational free energy 1.4, we have

F =
∑
i<j

JijEµ[XiXj ] +Hµ(X|XS) +Hµ(XS)

= ExS

∑
i<j

JijEµ[XiXj |XS = xS ] +Hµ(X|XS = xS)

+Hµ(XS) (2.1)

Here, the second equality comes from the Law of Total Expectation. Furthermore, we have that
Hµ(XS) ≤ log 2|S| ≤ log 2ℓ ≤ 1

ϵ2
. In addition, from direct application of the chain rule of entropy

and the fact H(A|B) ≤ H(A), we have that the second term can be written in terms of our product
distribution νXS

,

Hµ(X|XS = xS) = Hµ((X
(i))ni=1|XS = xS) ≤

n∑
i=1

Hµ(X
(i)|XS = xS) = HνxS

(X|XS = xS)

Thus by Prop. 2 and Cauchy-Schwarz we can modify the first term in (2.1) as follows

EXS

∑
i<j

JijEµ[XiXj |XS ]

 = ExS

∑
i<j

Jij cov(Xi, Xj |XS = xS) + Eµ[Xi|XS = xS ][Xj |XS = xS ]


≤

√∑
i<j

J2
ij

√
2

(
n

2

)
EXS

Ei,j [cov(Xi, Xj |XS)2]

+ ExSEµ[Xi|XS = xS ][Xj |XS = xS ]

≤ O(ϵn∥J∥F ) + ExS [Eµ[Xi|XS = xS ]Eµ[Xj |XS = xS ]] .

Here, the final inequality arises from Prop. 2. Note that for any i, j ̸∈ S, we have

EνxS
[XiXj ] = EνxS

[Xi]EνxS
[Xj ] = Eµ[Xi|XS = xS ]Eµ[Xj |XS = xS ].

Bringing all terms together, we have

F ≤ ExS

∑
i<j

JijEνxS
[XiXj ] +HνxS

(X)

+ 2ϵn∥J∥F +
1

ϵ2

We have the mean field approximation of free energy inside the expectation, hence upon choosing
ϵ = 1

n1/3∥J∥1/3F

we obtain

F − F∗ ≤ 3n2/3∥J∥2/3F

as desired.

Remark 2.3. Jain et al. find tight subexponential time algorithms for achieving error to within

∥J∥2/3F n2/3 using Sherali-Adams relaxations when ∥J∥2F = o(n) and showed corresponding hardness
under gap-ETH. We refer the interested reader to Theorem 1.2 of [JKR19].
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2.3 Theorem 1 is generally tight

Beyond the mean-field approximation with product distributions, we find that under fairly mild
conditions on the types of distributions, we cannot obtain better bounds on the error of our free
energy estimator. In this section, we will provide a construction of Ising models for which the error
is Ω((n∥J∥F )2/3) for a more general class of distributions given that ∥J∥F = Θ(

√
n).

Theorem 2 ([JKM18]). Let (Qn)
∞
n=0 be a sequence of families of distributions each on {±1}n which

is closed under the following two operations:

1. Conditioning on variables: if Q ∈ Qn, i ∈ [n], and xi ∈ {±1}, then the conditional distribution
of X[n]\i under Q given Xi = xi, is in Qn−1.

2. Taking products: if Q1 ∈ Qm and Q2 ∈ Qn then Q1 ×Q2 ∈ Qm × Qn = Qm+n.

If we take out the class of probability distributions induced by Ising models while maintaining the
family’s properties, there exists Ising models (Ji)

∞
i=1 of increasing size ni, with true distribution µJi

such that
KL(Qni∥µJi) = Ω((ni∥Jni∥F )2/3)

where Qni ≜ argminQ∈Qni
KL(Q,µJi).

Proof of Theorem 2. Consider the Ising model with coupling matrix J ∈ Rk×k with true Boltzmann
Gibbs distribution µJ . Let Q ≜ argminQ∈Qk

KL(Q|µJ). The premise of this construction will be to
duplicate this model for all m ∈ Z+ to construct our sequence of Ising models. For any m, consider
the Ising model on n ≜ mk nodes with a block diagonal coupling matrix consisting of copies of J .

J ′
m ≜


J 0 · · · 0
0 J · · · 0
...

...
. . .

...
0 0 · · · J


We claim that Q⊗m ∈ Qn is the closest distribution µJ ′

m
. Assume that there exists a closer

distribution QJ ′
m

∈ Qn. Upon conditioning on the last k(m − 1) variables, chain rule for KL

divergence immediately gives that there exists some distribution Q̃′
J on {±1}k, which must be

closer to µJ than QJ . Since Q̃′
J ∈ Qk by the first property of our theorem, we have contradicted

our original assumption.
To conclude, note that

inf
Q∈Qn

KL(Q∥µJ ′
m
) ≥ mKL(QJ∥µJ)

Hence we have a linear relationship between the different levels of our Ising model. This implies

that infQ∈Qn KL(Q∥µJ ′
m
) = Θ(n). Noting our assumption ∥J∥F = Θ(

√
n) gives Ω(n) = n2/3∥J∥2/3F

as desired.

3 More on correlation rounding: application in MaxCut

In this last section we digress from Ising models and present an interesting result from [RT12]
concerning correlation rounding on MaxCut.
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3.1 Mean Field Approximation and MaxCut

Let us establish the connection between MaxCut, a classical NP-hard (NP-complete in the decision
variant) problem, and estimating the free energy of graphical models. The problem of MaxCut is
defined as follows: given a graph G, split the nodes into two parts A and B such that the number
of edges connecting nodes in A to nodes in B is maximized. One can reformulate finding a cut as
assigning xi ∈ {±1} to each node where xixj = −1 when the edge ij is among the cut and xixj = 1
otherwise. Hence we have

MaxCut =
∑
ij∈E

x∗ix
∗
j , where x∗ = argmin

∑
ij∈E

xixj .

Using a similar idea, we can also formulate the objective for MaxCut as

MaxCut = sup
µ∈P({±1}n)

m · Eµ,ij∈E

[
1

4
(Xi −Xj)

2

]
.

To relate MaxCut back to the Ising model, set Jij = −βn
m 1ij∈E where β is some inverse temperature.

For any given graph G with n nodes and m ∈ ω(n) edges we have the following Gibbs distribution:

PG(x) ∝ exp

−β
n

m

∑
ij∈E

xixj

 .

Firstly, it is easy to notice that the MaxCut assignment x∗ is equivalent to the Max-A-Posterior
assignment of PG. However, this property itself is not as useful to us. Instead, consider plugging
in the delta distribution µ = δx∗ to (1.4), one has that (since H(δ) = 0):

F ≥ −βn

m

∑
E

x∗ix
∗
j .

But on the other hand, a simple bound on the entropy H(µ) ≤ n leads to:

F ≤ max
µ

Eµ

[
−βn

m

∑
E

xixj

]
+ n.

Combining the above, one has that (let M = maxx(−
∑

E xixj)):

1

βn
logZ =

1

βn
F ∈

[
M,M +

1

β

]
.

This suggests that, when one can estimate the free energy with sufficiently low temperature, one
can also approximate MaxCut with a small additive on the corresponding graph, and vice versa.

We will make an extra note on the parameter regime here. In the problem of MaxCut, the
interesting regime to our studies lies in the dense case m ∈ ω(n) with a super-constant average

degree. As a result, the norm of the coupling matrix can be written as ∥JG∥2F ≍ β2 n2

m . Therefore,
the condition that ∥J∥F ∈ o(

√
n) in our work, which may initially appear confusing, can be thus

interpreted as MaxCut on dense graphs and constant optimality ratio. For a survey of solving
MaxCut in the dense case, we refer to Section 2.2 of [JKR19].
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3.2 Main result

We present a direct algorithm based on convex relaxation that achieves the following result:

Theorem 3. Suppose a d-regular graph G with n nodes and m ∈ ω(n) edges such that the normalized
adjacency matrix A has eigenvalues 1 = λ1 ≥ λ2 ≥ · · · ≥ λn where |λ2|, |λn| < ε < 0.1. Then for
any δ > 0 there exists a nO(δ−2)-time algorithm which outputs Cutδ such that

Cutδ ≥ MaxCut−(ε+ δ)m.

Remark 3.1. Here our normalized adjacency matrix A is defined as d−1 multiplied by the standard
adjacency matrix so that A is doubly stochastic. Furthermore, the restriction that G is d-regular
is not crucial to the argument and could be dropped with some extra work.

Let us first examine the result. Note that by randomly selecting the cut we get at least
MaxCut ≥ m/2, so this indicates Cutδ ≥ (1−O(δ))MaxCut if δ ≳ ε is chosen. In practice, spectral
concentration results typically bound ε to be od(1) (for instance, in a random regular graph or an
Erdős-Rényi graph, see [LLV17][TY19]). Therefore, in all practicality, our result can be interpreted
as nO(δ−2)-time algorithm for (1−O(δ))-approximation for any constant δ > 0.

3.3 The convex relaxation

Let us first express MaxCut as an optimization problem. Recall that we can write the objective as:

C∗ =
1

m
MaxCut = sup

µ∈P
Eij∈E

[
1

4
(Xi −Xj)

2

]
where P is defined to be the class of singleton (delta) distributions where each Xi is fixed −1 or
1. As this optimization is computationally intractable in its worst form, it is natural to consider a
convex relaxation to this objective. Specifically, we will consider:

C∗ ≤ Ck = sup
µ̃∈SAk+1

Ẽij∈E

[
1

4
(Xi −Xj)

2

]
(3.1)

where SAk+1 represents the Sherali-Adams relaxation ([CT12]) to the (k+1)th level. We will omit
the technical details of this relaxation technique except for the following crucial lemma:

Lemma 4 ([CT12]). Any feasible solution to the t-th level Sherali-Adams relaxation is equivalent to
a family of distributions {D(S)}|S|≤t+1 such that they are locally consistent.

Intuitively, the above says that we only need to solve for all the (k + 2)-tuple joint marginals
that are locally consistent by solving this program. Moreover, any joint (k + 2) indices make a
real distribution. In the context of correlation rounding, however, (3.1) does not suffice via the
original convex relaxation, as µ̃ itself does not give us a lot of useful information concerning the
error bound. Instead, we will consider a slightly modified objective as follows:

Ck = sup
µ̃∈SAk+1

EK∈[k]E|S|=KẼij∈E,XS∼µ̃S

[
1

4
(Xi −Xj)

2 | XS

]
(3.2)

Firstly, we note that the objective in (3.2) is still at least C∗ as any delta measure is still incorporated
in this class. Furthermore, we note that solving this relaxation can be turned into solving a convex
program with nO(k) variables and poly(nO(k)) LP constraints, which can be done via standard
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Algorithm: MaxCut via convex relaxation.

Input: graph G via A; parameter δ, ε.

1. Solve µ̃ optimizing (3.2) via e.g. the ellipsoid method. Let k = δ−2 and sample K ∼ [k],

S ∼
([n]
K

)
uniformly at random. Sample XS = xS ∼ µ̃S .

2. Sample Xi = xi ∼ µ̃S∪{i}|XS = xS independently for each i ̸∈ S.

Output: {xi}i, the cut assignment.

Figure 1: Algorithm for MaxCut on an expander-like graph.

ellipsoid methods in poly(nO(k), log η−1)-time within additive error η. We omit the dependence on
η as it can be easily incorporated within the δ component in Theorem 3.

3.4 Average-case correlation rounding

Let us examine how correlation rounding can be employed in our application here. For our purposes
here, we need a slightly stronger lemma than Proposition 2:

Lemma 5 (Average-case correlation rounding, [RT12]). Let X1, . . . , Xn be a collection of {±1}
random variables. Then for any ℓ, one has that:

EL∈[ℓ]ES∈([n]
L )

EXS
Eu,v

[
cov(Xu, Xv | XS)

2
]
≲ ℓ−1

Proof Sketch. Consider the process on the potential Φ similar to the proof of Proposition 2, where
we do the conditioning operation for ℓ steps choosing indices i1, i2, . . . , iℓ along the way. Let
SL = {it}Lt=1. For any sample path, take L ∈ [ℓ] uniformly at random one has that:

ℓ−1 ≳ ELΦ(µ|XSL
)− Φ(µ|XSL+1

)

because Φ(µ|XSL
) strictly decreases with L from the data-processing inequality. And therefore,

taking expectation over everything we get the desired claim.

3.5 Proof of Theorem 3

We are now in place to complete the proof that the algorithm in Figure 1 does a good approximation
in expectation. First we note this simple lemma.

Lemma 6. The following is true for any (X1, X2, . . . , Xn) such that 1
n2

∑
i,j cov(Xi, Xj) ≤ δ and G

satisfy the conditions of Theorem 3:

1

m

∑
ij∈E(G)

cov(Xi, Xj) ≤ δ + ε.

9



Proof. Let M ∈ Rn×n be the covariance matrix such that Mij = cov(Xi, Xj), then one has that:

1

m

∑
ij∈E(G)

cov(Xi, Xj) =

〈
1

n
A,M

〉

=

〈
11⊤

n2
,M

〉
+

〈
1

n

(
A− 11⊤

n

)
,M

〉
Note that the first term

〈
11⊤

n2 ,M
〉
≤ δ is by condition, and the second term can be bounded as:

〈
1

n

(
A− 11⊤

n

)
,M

〉
≤ 1

n
λmax

(
A− 11⊤

n

)
· Tr(M) ≤ ε

since Tr(M) = n. This concludes the proof.

To finish up the proof, we still need to show how to construct the cut given a µ̃ from optimizing
(3.2) and Proposition 2. From Cauchy-Schwartz over Lemma 5, we see that:

EK∈[k]ES∈([n]
K )EXS

Eu,v |cov(Xu, Xv | XS)| ≲ k−1/2. (3.3)

At a high level, we will consider Step 1 in Figure 1 as fixed for now and assume the global correlation
rounding inequality (Lemma 5), which is true in expectation over Step 1. Then, we will show
that sampling from Step 2 on average gives a good cut by bounding the difference between the
relaxation (Ẽ[XiXj |XS ]) and expected cut (Ẽ[Xi|XS ]Ẽ[Xj |XS ]), which happens to differ by exactly
the covariance!

Formally, consider Step 2 in Figure 1: with expectation over randomness from sampling at Step
1, (3.3) can be re-written as:

EStep 1

 1

n2

∑
i,j

| cov(Xi, Xj |XS)|

 ≲ k−1/2 ≍ δ

since after fixing XS the relevant terms disappear, and we may assume that k ∈ o(n). Furthermore,
the discrepancy in the expected cut size from this algorithm is conveniently:

E[C− Calg] = EStep 1

−1

m

∑
ij∈E

Ẽ[XiXj |XS ]− Ẽ[Xi|XS ]Ẽ[Xj |XS ]


= EStep 1

−1

m

∑
ij∈E

cov(Xi, Xj |XS)

 ≤ δ + ε

where the last inequality follows from Lemma 6 by treating the distribution on XS as fixed from
Step 1. Combined with the result following (3.2) that C ≥ C∗ the true MaxCut, our proof for
Theorem 3 is complete (the algorithm performs well in expectation over Step 1 and Step 2).

4 Discussions

We conclude this note with some followup results as well as open directions for future work.
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4.1 Followup works

We survey some results extending from those covered in this note. In [Eld20], the authors extend

the Frobenius norms bounds to be based on the general Schatten-p norm ∥J∥Sp :=
(∑

i∈[n] |λi|p
)1/p

.

In particular, they derived a O
(
1+p
p

(
n∥J∥Sp

) p
1+p

)
bound on the mean-field approximation error.

When p = 2, where the Schatten norm reduces to the Frobenius norm, this recovers Theorem 1.
However, for optimal p one usually arrives at bounds that are almost dimension-free (see the
examples therein). In a succeeding work [Aug21], the authors proved a bound of

√
n∥J∥F , which

also subsequently improves upon Theorem 1.
In [KLR22], the authors constructed an estimation algorithm (Algorithm 3 and Theorem 1.1

therein) by combining variational inference and Glauber dynamics. When restricted to Ising models

like the setting of our expository, they give a
(n∥J∥op)O(∥J∥2F )

ε2
runtime bound for estimation up to

additive ε error on logZ, which is stronger than the convex-relaxation algorithm in [JKR19] (while
we did not cover the algorithm here, it is in spirit similar to our MaxCut relaxation). See Remark
C.5 therein for further discussions.

4.2 Open directions

We conclude by mentioning open directions related to the results in this expository.

1. Note in the final step of Theorem 1 we chose ϵ to obtain bounds of O((n∥J∥F )2/3). Fur-
thermore, our lower bounds say that mean-field error is at least Ω(n) if ∥J∥2F ∈ Ω(n).
The natural question here is whether one can improve the upper bound in the forms like
|F∗ − F| ∈ O(n1−α∥J∥2αF ) (see [Aug21] for α = 1/2).

2. The runtime complexity of MaxCut convex relaxation nO(δ−2) arises as an artifact from cor-
relation rounding and the fact that covariance decays no quicker than 1/

√
k. While corre-

lation rounding may not be improved for spin glasses (Section 5 in [JKR19]), could it be
that MaxCut can be approximately solved using o(δ−2) rounds of relaxations (Sherali-Adams,
Sum-of-Squares)?
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